缓存穿透,如何解决?
缓存穿透是指查询一个不存在的数据,如果从存储层查不到数据也就不会写入缓存,就会导致这个不存在的数据每次请求都要到DB去查询,当查询量过多时可能就会导致DB挂掉。一般这种情况就是遭到了攻击。
一般使用布隆过滤器去解决它(也可以给redis设置这个数据的key然后对应null值,以后都返回null)
什么是布隆过滤器?
布隆过滤器主要用于检索一个元素是否在一个集合中。
他的底层主要是先去优化一个比较大的数组,里面存放的二进制0或1。最开始都是0,当一个key来了之后经过3次hash计算,计算出存放的下标然后把数组中原来的0改为1,三个数组的位置就可以表明一个key的存在。查询过程也是一样的。
缺点就是布隆过滤器可能产生一定的误判,我们一般可以设置这个误判率,一般是不超过5%,这个误判是必然存在的,我们还可以有另一种方法就是尽力增加数组的长度。误判率在5%以内一般项目也是可以接受的,不至于高并发下压倒数据库。
缓存击穿,如何解决?
缓存击穿就是一个设置了过期时间的key,在某个时间点过期了,恰好此时对这个key有大量的并发请求过来,这些请求发现缓存中key已经过期了就会从DB中去查询,此时的大并发就有可能把DB压垮。
有两种解决方案:
1.互斥锁。用于强一致的时候,性能相对差。
2.逻辑过期。在设置key的时候,设置一个过期时间字段一起存入缓存之中,不给当前的key设置过期时间。当查询的时候,从redis取出数据后判断时间是否过期。如果过期就开启另一个线程去进行数据同步,当前线程正常返回数据,这个数据不是最新的。高可用,性能高,但不是强一致。
缓存雪崩,如何解决?
缓存雪崩就是设置缓存时采用了相同的过期时间,导致缓存存在某一时刻同时失效,请求全部转发到DB,DB瞬间压力剧增可能导致宕机。(也有可能是因为redis宕机)
缓存击穿与缓存雪崩的区别:雪崩是很多key,击穿是一个key。
解决方案就是将缓存的过期时间分散开,可以在原有的过期时间上增加个随机值,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。
redis作为缓存,mysql的数据如何与redis进行同步?(双写一致性)
需要看业务是强一致性还是延时一致性
如果是延时一致的业务,采用异步通知。
1.使用MQ中间件,更新数据之后通知缓存进行删除。
2.利用canal中间件,不需要修改业务代码,伪装为mysql的一个从节点,canal通过读取binlog数据更新缓存。
如果是强一致的业务,采用Redisson提供的读写锁。
1.共享锁:读锁readLock,可以共享读操作。
2.排他锁:独占锁writeLock,阻塞其他线程的读写操作。
排他锁是如何保证读写,读读互斥?
排他锁底层使用了setnx,保证了同时只能有一个线程操作锁住的方法。
延时双删是什么,有什么特性?
如果是写操作,我们先把缓存中的数据删除,然后更新数据库,最后再延时删除缓存中的数据。
但是延时多久不好确定,在延时的过程中可能出现脏数据,并不能保证强一致性。
redis作为缓存,数据的持久化是怎么做的?
在redis中提供了两种数据持久化的方式:1.RDB 2.AOF
两种持久化方式有什么区别?
RDB是一个快照文件,它是把redis内存存储的数据写到磁盘上,当redis实例宕机恢复数据的时候,方便从RDB的快照文件中恢复数据。
AOF的含义是追加文件,当redis操作写命令的时候,都会存储到这个文件中,当redis实例宕机恢复数据时,会从这个文件中再次执行一遍命令来恢复数据。
这两种方式,哪种恢复的比较快?
RDB因为是二进制文件,在保存的时候体积也是比较小的,它的恢复速度比较快,但是它有可能会丢失数据,我们通常在项目中也会使用AOF来恢复数据,虽然AOF恢复的速度慢一些,但是它丢失数据的风险要小很多,在AOF文件中可以设置刷盘策略,可以设置成每秒批量写入一次命令。
redis的数据过期策略有哪些?
redis中提供了两种数据过期删除策略。
第一种就是惰性删除,在设置该key的过期时间后,我们不去管他,当需要该key时,再去检查它是否过期,如果过期就删掉它,没过期就返回。
第二种就是定期删除,就是每隔一段时间,就对一些key进行检查,删除里面过期的key。
定期删除有两种模式:
1.SLOW模式时定时任务,执行频率默认为10hz,每次不超过25ms,通过修改配置文件redis.conf的hz选项来调整这个次数。
2.FAST模式执行的频率不固定,每次事件循环会尝试执行,但两次间隔不低于2ms,每次耗时不超过1ms。
redis的过期删除策略一般是惰性删除+定期删除两种策略进行配合使用。
redis的数据淘汰策略有哪些?
在redis中提供了很多种,默认是noeviction,不删除任何数据,内存不足直接报错。
可以在redis的配置文件中进行设置,里面有两个重要的概念,一个是LRU,另一个是LFU。
LRU的意思就是最近最少使用,用当前时间减去最后一次访问时间,这个值越大淘汰优先级就越高。
LFU的意思是最少频率使用,会统计每个key的访问呢频率,值越小淘汰优先级越高。
如果数据库有1000万数据,redis只能缓存20w数据,如何保证redis中的数据都是热点数据?
可以使用allkeys-lru,留下来的就是经常访问的热点数据。
redis分布式锁如何实现?
在redis中提供了一个命令setnx(SET if not exists)
由于redis是单线程的,用了命令之后,只能有一个一个客户端对某一个key设置值,在没有过期或删除key的时候,其他客户端是不能设置这个key的。
如何控制redis实现分布式锁有效时长?
redis的setnx指令不好控制这个问题,所以可以使用redis的一个框架redisson。
在redisson中需要手动加锁,并且可以控制所得失效时间和等待时间,当锁住的一个业务还没有执行完成的时候,在redisson中引入了一个看门狗机制,就是每隔一段时间就增加加锁的持有时间,当业务执行完成之后释放锁就可以了。
还有一个好处就是,在高并发下,一个业务有可能会执行很快,先客户1持有锁的时候,客户2来了以后并不会马上拒绝,他会自旋不断尝试获取锁,如果客户1释放了锁,客户2就可以马上持有锁,性能也得到了提升。
redisson实现的分布式锁是可重入的吗?
是可以重入的,这样可以避免死锁。这个重入其实是在内部判断是否是当前线程持有的锁,如果是,就会计数,如果释放锁就会在计算上减一。在存储数据的时候采用的hash结构,大key可以按照自己的业务进行定制,其中小key是当前线程的唯一标识,value是当前线程重入的次数。
redisson实现的分布式能解决主从一致性的问题吗?
不能。例如,当线程1加锁成功后,master节点数据会异步复制到slave节点,此时当前持有redis锁的master节点宕机,slave节点被提升为新的master节点,假如现在来了一个线程2,再次加锁,会在新的master节点上加锁成功,这个时候就会出现两个节点同时持有一把锁的问题。
我们可以利用redisson提供的红锁来解决,他的主要作用是,不能只在一个redis实例上创建锁,应该是在多个redis实例上创建锁,并且要求在大多数redis节点上都成功创建锁,红锁中要求redis的节点数量要过半。这样就能避免线程1加锁成功后master节点宕机导致线程2成功加锁到新的master节点上的问题。
但是如果使用了红锁,需要同时在多个节点上都添加锁,性能就变得很低,并且运维维护成本也非常高,所以一般在项目中也不会使用红锁,官方也暂时废弃了这个红锁。
如果业务非要保证数据的强一致性,如何解决?
redis本身就是支持高可用的,如果做到强一致就很影响性能,所以如果有强一致要求的业务,可以使用zookeeper实现的分布式锁,它可以保证强一致性。
redis集群有哪些方案?
总共有三种,主从同步,哨兵模式,redis分片集群
什么是主从同步?
单节点的redis的并发能力是有上限的,要进一步提高redis的并发能力,可以搭建主从集群,实现读写分离。一般都是一主多从,主节点负责写数据,从节点负责读数据,主节点写入数据之后,需要把数据同步到从节点中。
主从同步数据的流程?
主从同步分为两个阶段,一个是全量同步,一个是增量同步。
全量同步是指从节点第一次与主节点建立连接的时候使用全量同步,流程是这样的:
1.从节点请求主节点同步数据,其中从节点会携带自己的replication id和offset偏移量。
2.主节点判断是否是第一次请求,主要判断依据就是,主节点与从节点是否是同一个replication id,如果不是,就说明是第一次同步,那主节点就会把自己的replication id和offset发送给从节点,让从节点与主节点的信息保持一致。
3.在同时主节点会执行bgsave,生成RDB文件后,发送给从节点去执行,从节点先把自己的数据清空,然后执行主节点发送过来的RDB,这样就保持了一致。
如果在RDB生成执行期间,依然有请求到了主节点,而主节点会以命令的方式记录到缓冲区,缓冲区是一个日志文件,最后把这个日志文件发送给从节点,这样就能保证主节点与从节点完全一致,后期在同步数据的时候,都是依赖于这个日志文件,这个就是全量同步。
增量同步是指,当从节点服务重启之后,数据就不一致了,所以这个时候,从节点会请求主节点同步数据,主节点还是判断不是第一次请求,不是第一次就获取从节点的offset值,然后主节点从命令日志中获取offset值之后的数据,发送给从节点进行数据同步。
怎么保证Redis的高并发高可用
首先可以搭建主从集群,再加上使用redis中的哨兵模式,哨兵模式可以实现主从集群的自动故障恢复,里面就包含了对主从服务的监控、自动故障恢复、通知;如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主;同时Sentinel也充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端,所以一般项目都会采用哨兵的模式来保证redis的高并发高可用。
使用redis是单点还是集群,哪种集群
一般单节点不超过10G内存,如果Redis内存不足则可以给不同服务分配独立的Redis主从节点。尽量不做分片集群。因为集群维护起来比较麻烦,并且集群之间的心跳检测和数据通信会消耗大量的网络带宽,也没有办法使用lua脚本和事务。
redis集群脑裂,该怎么解决呢?
由于redis master节点和redis salve节点和sentinel处于不同的网络分区,使得sentinel没有能够心跳感知到master,所以通过选举的方式提升了一个salve为master,这样就存在了两个master,就像大脑分裂了一样,这样会导致客户端还在old master那里写入数据,新节点无法同步数据,当网络恢复后,sentinel会将old master降为salve,这时再从新master同步数据,这会导致old master中的大量数据丢失。
关于解决,在redis的配置中可以设置:第一可以设置最少的salve节点个数,比如设置至少要有一个从节点才能同步数据,第二个可以设置主从数据复制和同步的延迟时间,达不到要求就拒绝请求,就可以避免大量的数据丢失。
redis的分片集群有什么作用?
分片集群主要解决的是,海量数据存储的问题,集群中有多个master,每个master保存不同数据,并且还可以给每个master设置多个slave节点,就可以继续增大集群的高并发能力。同时每个master之间通过ping监测彼此健康状态,就类似于哨兵模式了。当客户端请求可以访问集群任意节点,最终都会被转发到正确节点。
Redis分片集群中数据是怎么存储和读取的?
Redis 集群引入了哈希槽的概念,有 16384 个哈希槽,集群中每个主节点绑定了一定范围的哈希槽范围, key通过 CRC16 校验后对 16384 取模来决定放置哪个槽,通过槽找到对应的节点进行存储。
取值的逻辑是一样的。
Redis是单线程的,但是为什么还那么快?
1、完全基于内存的,C语言编写。
2、采用单线程,避免不必要的上下文切换可竞争条件。
3、使用多路I/O复用模型,非阻塞IO。
例如:bgsave 和 bgrewriteaof 都是在后台执行操作,不影响主线程的正常使用,不会产生阻塞。
解释一下I/O多路复用模型?
I/O多路复用是指利用单个线程来同时监听多个Socket ,并在某个Socket可读、可写时得到通知,从而避免无效的等待,充分利用CPU资源。目前的I/O多路复用都是采用的epoll模式实现,它会在通知用户进程Socket就绪的同时,把已就绪的Socket写入用户空间,不需要挨个遍历Socket来判断是否就绪,提升了性能。
其中Redis的网络模型就是使用I/O多路复用结合事件的处理器来应对多个Socket请求,比如,提供了连接应答处理器、命令回复处理器,命令请求处理器;
在Redis6.0之后,为了提升更好的性能,在命令回复处理器使用了多线程来处理回复事件,在命令请求处理器中,将命令的转换使用了多线程,增加命令转换速度,在命令执行的时候,依然是单线程。