22/8/5状压dp蒙德里安的梦想

求把 N×MN×M 的棋盘分割成若干个 1×21×2 的长方形,有多少种方案。

例如当 N=2,M=4N=2,M=4 时,共有 55 种方案。当 N=2,M=3N=2,M=3 时,共有 33 种方案。

如下图所示:

输入格式

输入包含多组测试用例。

每组测试用例占一行,包含两个整数 NN 和 MM。

当输入用例 N=0,M=0N=0,M=0 时,表示输入终止,且该用例无需处理。

输出格式

每个测试用例输出一个结果,每个结果占一行。

数据范围

1≤N,M≤11

 

 

#include <bits/stdc++.h>
#include <vector>
#include <cstring>
using namespace std;
typedef long long int LL;
const int N=12,M=1<<N;
LL f[N][M];//f[i][j]指的是第i列状态是j的方案数
vector<int> state[M];
bool st[M];
int n,m;
int main()
{
    while(cin>>n>>m,n||m)
    {//先提前预处理st数组
        for(int i=0;i<1<<n;i++)//1<<n表示2的n次方
        {
            int cnt=0;//cnt记录连续0的个数
            bool is_valid=true;
            for(int j=0;j<n;j++)//遍历每一位
            {
                if(i>>j&1)//如果第j位是1
                {
                    if(cnt&1)
                    {
                        is_valid=false;
                        break;
                    }
                    cnt=0;
                }
                else cnt++;//如果第j位是0,cnt++
            }
            if(cnt&1) is_valid=false;//还要判断最后一段是不是奇数个0
            st[i]=is_valid;
        }
        for(int i=0;i<1<<n;i++)
        {
            state[i].clear();
            for(int j=0;j<1<<n;j++)
               if((i&j)==0&&st[i|j])//判断i情况和j情况是否矛盾
               state[i].push_back(j);
        }
        memset(f,0,sizeof(f));
        f[0][0]=1;
        for(int i=1;i<=m;i++)
            for(int j=0;j<1<<n;j++)
                for(auto k:state[j])//遍历state[i]
                f[i][j]+=f[i-1][k];
        cout<<f[m][0]<<endl;//f[m][0]指第m列没有伸出的状态的方案数
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值