求把 N×MN×M 的棋盘分割成若干个 1×21×2 的长方形,有多少种方案。
例如当 N=2,M=4N=2,M=4 时,共有 55 种方案。当 N=2,M=3N=2,M=3 时,共有 33 种方案。
如下图所示:
输入格式
输入包含多组测试用例。
每组测试用例占一行,包含两个整数 NN 和 MM。
当输入用例 N=0,M=0N=0,M=0 时,表示输入终止,且该用例无需处理。
输出格式
每个测试用例输出一个结果,每个结果占一行。
数据范围
1≤N,M≤11
#include <bits/stdc++.h>
#include <vector>
#include <cstring>
using namespace std;
typedef long long int LL;
const int N=12,M=1<<N;
LL f[N][M];//f[i][j]指的是第i列状态是j的方案数
vector<int> state[M];
bool st[M];
int n,m;
int main()
{
while(cin>>n>>m,n||m)
{//先提前预处理st数组
for(int i=0;i<1<<n;i++)//1<<n表示2的n次方
{
int cnt=0;//cnt记录连续0的个数
bool is_valid=true;
for(int j=0;j<n;j++)//遍历每一位
{
if(i>>j&1)//如果第j位是1
{
if(cnt&1)
{
is_valid=false;
break;
}
cnt=0;
}
else cnt++;//如果第j位是0,cnt++
}
if(cnt&1) is_valid=false;//还要判断最后一段是不是奇数个0
st[i]=is_valid;
}
for(int i=0;i<1<<n;i++)
{
state[i].clear();
for(int j=0;j<1<<n;j++)
if((i&j)==0&&st[i|j])//判断i情况和j情况是否矛盾
state[i].push_back(j);
}
memset(f,0,sizeof(f));
f[0][0]=1;
for(int i=1;i<=m;i++)
for(int j=0;j<1<<n;j++)
for(auto k:state[j])//遍历state[i]
f[i][j]+=f[i-1][k];
cout<<f[m][0]<<endl;//f[m][0]指第m列没有伸出的状态的方案数
}
return 0;
}