LeetCode题练习与总结:矩阵置零--73

281 篇文章 0 订阅
163 篇文章 0 订阅

一、题目描述

给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法

示例 1:

输入:matrix = [[1,1,1],[1,0,1],[1,1,1]]
输出:[[1,0,1],[0,0,0],[1,0,1]]

示例 2:

输入:matrix = [[0,1,2,0],[3,4,5,2],[1,3,1,5]]
输出:[[0,0,0,0],[0,4,5,0],[0,3,1,0]]

提示:

  • m == matrix.length
  • n == matrix[0].length
  • 1 <= m, n <= 200
  • -2^31 <= matrix[i][j] <= 2^31 - 1

二、解题思路

  1. 遍历整个矩阵,找到所有元素为0的位置,将它们的行和列的索引分别存储在两个集合中。
  2. 再次遍历矩阵,对于每个元素,如果它的行或列的索引在之前存储的集合中,就将该元素设为0。

三、具体代码

import java.util.HashSet;
import java.util.Set;

public class Solution {
    public void setZeroes(int[][] matrix) {
        int m = matrix.length;
        int n = matrix[0].length;
        Set<Integer> rows = new HashSet<>();
        Set<Integer> cols = new HashSet<>();

        // 遍历矩阵,找到所有元素为0的位置
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (matrix[i][j] == 0) {
                    rows.add(i);
                    cols.add(j);
                }
            }
        }

        // 再次遍历矩阵,将元素设为0
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (rows.contains(i) || cols.contains(j)) {
                    matrix[i][j] = 0;
                }
            }
        }
    }

    public static void main(String[] args) {
        Solution solution = new Solution();
        int[][] matrix1 = {{1, 1, 1}, {1, 0, 1}, {1, 1, 1}};
        solution.setZeroes(matrix1);
        for (int[] row : matrix1) {
            for (int num : row) {
                System.out.print(num + " ");
            }
            System.out.println();
        }

        int[][] matrix2 = {{0, 1, 2, 0}, {3, 4, 5, 2}, {1, 3, 1, 5}};
        solution.setZeroes(matrix2);
        for (int[] row : matrix2) {
            for (int num : row) {
                System.out.print(num + " ");
            }
            System.out.println();
        }
    }
}

四、时间复杂度和空间复杂度

1. 时间复杂度
  • 遍历矩阵找到所有元素为0的位置需要 O(m * n) 时间,其中 m 是矩阵的行数,n 是矩阵的列数。
  • 再次遍历矩阵将元素设为0也需要 O(m * n) 时间。
  • 因此,总的时间复杂度是 O(m * n)。
2. 空间复杂度
  • 使用了两个集合来存储需要置零的行和列的索引,每个集合的空间复杂度是 O(m + n),因为最坏的情况是矩阵的所有行或列都需要置零。
  • 因此,总的空间复杂度是 O(m + n)。

五、总结知识点

  1. 二维数组matrix 是一个二维数组,用于存储矩阵中的元素。

  2. HashSetHashSet 是 Java 中的一种集合实现,用于存储不重复的元素。在代码中,rows 和 cols 是两个 HashSet 实例,分别用于存储需要置零的行和列的索引。

  3. for 循环:用于遍历矩阵的行和列。

  4. 条件语句if 语句用于检查矩阵中的元素是否为0,以及行或列的索引是否在 HashSet 中。

  5. 集合操作add 方法用于向 HashSet 中添加元素,contains 方法用于检查 HashSet 是否包含某个元素。

  6. 数组访问:使用索引 i 和 j 访问二维数组 matrix 中的元素,并进行赋值操作。

  7. 算法思想:代码实现了原地算法,即不使用额外的矩阵来存储结果,而是直接在原矩阵上进行修改。

  8. 函数定义setZeroes 是一个公共方法,用于接收一个二维整数数组 matrix 作为参数,并修改其内容。

  9. 主函数main 函数是程序的入口点,用于创建 Solution 类的实例,调用 setZeroes 方法,并打印修改后的矩阵。

以上就是解决这个问题的详细步骤,希望能够为各位提供启发和帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一直学习永不止步

谢谢您的鼓励,我会再接再厉的!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值