一、题目描述
n 位格雷码序列 是一个由 2^n
个整数组成的序列,其中:
- 每个整数都在范围
[0, 2^n - 1]
内(含0
和2^n - 1
) - 第一个整数是
0
- 一个整数在序列中出现 不超过一次
- 每对 相邻 整数的二进制表示 恰好一位不同 ,且
- 第一个 和 最后一个 整数的二进制表示 恰好一位不同
给你一个整数 n
,返回任一有效的 n 位格雷码序列 。
示例 1:
输入:n = 2 输出:[0,1,3,2] 解释: [0,1,3,2] 的二进制表示是 [00,01,11,10] 。 - 00 和 01 有一位不同 - 01 和 11 有一位不同 - 11 和 10 有一位不同 - 10 和 00 有一位不同 [0,2,3,1] 也是一个有效的格雷码序列,其二进制表示是 [00,10,11,01] 。 - 00 和 10 有一位不同 - 10 和 11 有一位不同 - 11 和 01 有一位不同 - 01 和 00 有一位不同
示例 2:
输入:n = 1 输出:[0,1]
提示:
1 <= n <= 16
二、解题思路
- 首先,对于n=0,只有一个格雷码序列,即[0]。
- 对于n>0,我们可以先求出n-1的格雷码序列,然后在每个元素的最高位前加上0,得到前半部分;再在n-1的格雷码序列的每个元素的最高位前加上1,得到后半部分,但需要将后半部分倒序排列。
- 将前半部分和后半部分拼接起来,就得到了n的格雷码序列。
三、具体代码
import java.util.ArrayList;
import java.util.List;
public class Solution {
public List<Integer> grayCode(int n) {
List<Integer> res = new ArrayList<>();
res.add(0);
for (int i = 1; i <= n; i++) {
int size = res.size();
for (int j = size - 1; j >= 0; j--) {
res.add(res.get(j) | (1 << (i - 1)));
}
}
return res;
}
}
四、时间复杂度和空间复杂度
1. 时间复杂度
- 对于每个n,我们都会生成一个长度为2^n的格雷码序列。
- 在生成过程中,我们会遍历已经生成的序列,每次遍历的长度都是前一次的两倍。
- 因此,总的时间复杂度是O(2^n),因为我们需要生成2^n个元素,每个元素都是通过一次位操作得到的。
2. 空间复杂度
- 我们需要一个长度为2^n的列表来存储格雷码序列。
- 因此,空间复杂度也是O(2^n),因为我们需要存储2^n个整数。
综上所述,该算法的时间复杂度和空间复杂度都是O(2^n)。
五、总结知识点
1. 位操作:
|
:位或操作符,用于在对应的位上只要有一个为1就置1。<<
:左移操作符,用于将一个数的所有位都向左移动指定的位数,相当于乘以2的幂。
2. 循环结构:
for
循环:用于重复执行一段代码固定的次数,或者遍历一个序列。
3. 列表操作:
ArrayList
:Java中的动态数组实现,用于存储和操作序列数据。add
方法:用于向列表中添加元素。
4. 数学知识:
- 格雷码序列的生成规则,即通过在原有序列的每个元素前加上1(倒序)来生成新的序列。
5. 变量和赋值:
int
类型变量用于存储整数值。- 变量的赋值和操作。
6. 函数定义和返回值:
public List<Integer> grayCode(int n)
:定义了一个公共方法grayCode
,接受一个整数参数n
,并返回一个Integer
类型的列表。
7. 递推关系:
- 代码利用了格雷码序列的递推性质,即n位格雷码序列可以通过n-1位格雷码序列构造出来。
8. 算法设计:
- 使用迭代的方式来构建格雷码序列,每次迭代都是基于上一次的结果进行构造。
以上就是解决这个问题的详细步骤,希望能够为各位提供启发和帮助。