LeetCode题练习与总结:格雷编码--89

300 篇文章 0 订阅
177 篇文章 0 订阅

一、题目描述

n 位格雷码序列 是一个由 2^n 个整数组成的序列,其中:

  • 每个整数都在范围 [0, 2^n - 1] 内(含 02^n - 1
  • 第一个整数是 0
  • 一个整数在序列中出现 不超过一次
  • 每对 相邻 整数的二进制表示 恰好一位不同 ,且
  • 第一个最后一个 整数的二进制表示 恰好一位不同

给你一个整数 n ,返回任一有效的 n 位格雷码序列

示例 1:

输入:n = 2
输出:[0,1,3,2]
解释:
[0,1,3,2] 的二进制表示是 [00,01,11,10] 。
- 00 和 01 有一位不同
- 01 和 11 有一位不同
- 11 和 10 有一位不同
- 10 和 00 有一位不同
[0,2,3,1] 也是一个有效的格雷码序列,其二进制表示是 [00,10,11,01] 。
- 00 和 10 有一位不同
- 10 和 11 有一位不同
- 11 和 01 有一位不同
- 01 和 00 有一位不同

示例 2:

输入:n = 1
输出:[0,1]

提示:

  • 1 <= n <= 16

二、解题思路

  1. 首先,对于n=0,只有一个格雷码序列,即[0]。
  2. 对于n>0,我们可以先求出n-1的格雷码序列,然后在每个元素的最高位前加上0,得到前半部分;再在n-1的格雷码序列的每个元素的最高位前加上1,得到后半部分,但需要将后半部分倒序排列。
  3. 将前半部分和后半部分拼接起来,就得到了n的格雷码序列。

三、具体代码

import java.util.ArrayList;
import java.util.List;

public class Solution {
    public List<Integer> grayCode(int n) {
        List<Integer> res = new ArrayList<>();
        res.add(0);
        for (int i = 1; i <= n; i++) {
            int size = res.size();
            for (int j = size - 1; j >= 0; j--) {
                res.add(res.get(j) | (1 << (i - 1)));
            }
        }
        return res;
    }
}

四、时间复杂度和空间复杂度

1. 时间复杂度
  • 对于每个n,我们都会生成一个长度为2^n的格雷码序列。
  • 在生成过程中,我们会遍历已经生成的序列,每次遍历的长度都是前一次的两倍。
  • 因此,总的时间复杂度是O(2^n),因为我们需要生成2^n个元素,每个元素都是通过一次位操作得到的。
2. 空间复杂度
  • 我们需要一个长度为2^n的列表来存储格雷码序列。
  • 因此,空间复杂度也是O(2^n),因为我们需要存储2^n个整数。

综上所述,该算法的时间复杂度和空间复杂度都是O(2^n)。

五、总结知识点

1. 位操作

  • |:位或操作符,用于在对应的位上只要有一个为1就置1。
  • <<:左移操作符,用于将一个数的所有位都向左移动指定的位数,相当于乘以2的幂。

2. 循环结构

  • for 循环:用于重复执行一段代码固定的次数,或者遍历一个序列。

3. 列表操作

  • ArrayList:Java中的动态数组实现,用于存储和操作序列数据。
  • add 方法:用于向列表中添加元素。

4. 数学知识

  • 格雷码序列的生成规则,即通过在原有序列的每个元素前加上1(倒序)来生成新的序列。

5. 变量和赋值

  • int 类型变量用于存储整数值。
  • 变量的赋值和操作。

6. 函数定义和返回值

  • public List<Integer> grayCode(int n):定义了一个公共方法grayCode,接受一个整数参数n,并返回一个Integer类型的列表。

7. 递推关系

  • 代码利用了格雷码序列的递推性质,即n位格雷码序列可以通过n-1位格雷码序列构造出来。

8. 算法设计

  • 使用迭代的方式来构建格雷码序列,每次迭代都是基于上一次的结果进行构造。

以上就是解决这个问题的详细步骤,希望能够为各位提供启发和帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一直学习永不止步

谢谢您的鼓励,我会再接再厉的!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值