LeetCode题练习与总结:二叉树的中序遍历--94

302 篇文章 0 订阅
82 篇文章 0 订阅

一、题目描述

给定一个二叉树的根节点 root ,返回 它的 中序 遍历

示例 1:

输入:root = [1,null,2,3]
输出:[1,3,2]

示例 2:

输入:root = []
输出:[]

示例 3:

输入:root = [1]
输出:[1]

提示:

  • 树中节点数目在范围 [0, 100]
  • -100 <= Node.val <= 100

二、递归方法

(一)解题思路

  1. 如果当前节点为空,返回。
  2. 递归遍历左子树。
  3. 访问当前节点,将节点的值添加到结果列表中。
  4. 递归遍历右子树。

(二)具体代码

class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();
        inorder(root, result);
        return result;
    }

    private void inorder(TreeNode node, List<Integer> result) {
        if (node == null) {
            return;
        }
        inorder(node.left, result);
        result.add(node.val);
        inorder(node.right, result);
    }
}

(三)时间复杂度和空间复杂度

1. 时间复杂度
  • 递归方法会访问树中的每个节点恰好一次,因此时间复杂度与树中节点的数量成正比。
  • 在这个算法中,每个节点都会被访问一次,所以时间复杂度是 O(n),其中 n 是二叉树中的节点数。
2. 空间复杂度
  • 递归方法的空间复杂度主要取决于递归栈的深度,这通常与树的高度成正比。
  • 在最坏的情况下,树完全不平衡,每个节点都只有左子节点或者只有右子节点,递归栈的深度会达到节点数 n,因此空间复杂度为 O(n)。
  • 在最好的情况下,树是完全平衡的,递归栈的深度是 log(n),因此空间复杂度为 O(log(n))。
  • 综合考虑,空间复杂度在最坏情况下是 O(n),在最好情况下是 O(log(n)),平均情况下则介于两者之间。

综上所述,递归方法的中序遍历代码的时间复杂度是 O(n),空间复杂度在最坏情况下是 O(n),在最好情况下是 O(log(n))。

(四)总结知识点

1. 递归(Recursion):

  • 代码中使用了递归函数 inorder 来遍历二叉树的左子树、根节点和右子树。
  • 递归是一种常用的算法设计技巧,它通过函数自身调用自己来进行循环。

2. 二叉树(Binary Tree):

  • 代码操作的数据结构是二叉树,每个节点包含一个值和指向左右子节点的引用。
  • 二叉树是一种基础的数据结构,常用于各种算法问题。

3. 二叉树的中序遍历(Inorder Traversal of a Binary Tree):

  • 中序遍历是一种遍历二叉树的方法,按照“左-根-右”的顺序访问每个节点。
  • 这是二叉树遍历的三种基本方法之一(其他两种是前序遍历和后序遍历)。

4. Java 集合框架(Java Collections Framework):

  • 代码使用了 ArrayList 来存储遍历的结果,这是 Java 集合框架中的一个类。
  • ArrayList 是一个可调整大小的数组实现,提供了对元素的快速随机访问。

5. 函数定义和调用(Function Definition and Invocation):

  • 代码定义了两个函数:inorderTraversal 和 inorder
  • inorderTraversal 是公共方法,供外部调用;inorder 是私有辅助方法,用于递归遍历。

6. 基本语法(Basic Syntax):

  • 代码使用了基本的 Java 语法,如类定义、方法定义、条件语句(if)、返回语句(return)等。

7. 递归栈(Recursive Stack):

  • 虽然代码中没有显式使用栈数据结构,但递归函数在调用时会使用调用栈来存储每一层递归的状态。

三、迭代方法

(一)解题思路

  1. 初始化一个空栈和一个空列表。
  2. 将根节点及其所有左子节点入栈。
  3. 弹出栈顶元素,将其值添加到结果列表中。
  4. 将弹出节点的右子节点及其所有左子节点入栈。
  5. 重复步骤3和4,直到栈为空。

(二)具体代码

import java.util.Stack;

class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();
        Stack<TreeNode> stack = new Stack<>();
        TreeNode current = root;

        while (current != null || !stack.isEmpty()) {
            while (current != null) {
                stack.push(current);
                current = current.left;
            }
            current = stack.pop();
            result.add(current.val);
            current = current.right;
        }

        return result;
    }
}

(三)时间复杂度和空间复杂度

1. 时间复杂度
  • 中序遍历需要访问二叉树中的每个节点一次,因此时间复杂度与二叉树中节点的数量成正比。
  • 在这个算法中,每个节点都会被访问一次,所以时间复杂度是 O(n),其中 n 是二叉树中的节点数。
2. 空间复杂度
  • 空间复杂度主要取决于迭代过程中使用的栈的大小。
  • 在最坏的情况下,树完全不平衡,每个节点都只有左子节点或者只有右子节点,栈的大小会达到节点数 n,因此空间复杂度为 O(n)。
  • 在最好的情况下,树是完全平衡的,栈的大小是 log(n),因此空间复杂度为 O(log(n))。
  • 综合考虑,空间复杂度在最坏情况下是 O(n),在最好情况下是 O(log(n)),平均情况下则介于两者之间。

综上所述,这段代码的时间复杂度是 O(n),空间复杂度在最坏情况下是 O(n),在最好情况下是 O(log(n))。

(四)总结知识点

1. 迭代(Iteration):

  • 代码使用了一个循环结构来迭代地遍历二叉树的节点,而不是使用递归。

2. 栈(Stack)数据结构:

  • 代码使用了一个 Stack 来存储访问过的节点,以便后续能够按照正确的顺序访问它们的右子节点。
  • 栈是一种后进先出(LIFO)的数据结构,非常适合用于这种需要回溯的场景。

3. 二叉树(Binary Tree):

  • 代码操作的数据结构是二叉树,每个节点包含一个值和指向左右子节点的引用。
  • 二叉树是一种基础的数据结构,常用于各种算法问题。

4. 二叉树的中序遍历(Inorder Traversal of a Binary Tree):

  • 中序遍历是一种遍历二叉树的方法,按照“左-根-右”的顺序访问每个节点。
  • 这是二叉树遍历的三种基本方法之一(其他两种是前序遍历和后序遍历)。

5. Java 集合框架(Java Collections Framework):

  • 代码使用了 ArrayList 来存储遍历的结果,这是 Java 集合框架中的一个类。
  • ArrayList 是一个可调整大小的数组实现,提供了对元素的快速随机访问。
  • 同时,代码使用了 Stack 类来实现栈数据结构。

6. 循环和条件语句(Loop and Conditional Statements):

  • 代码使用了 while 循环来迭代遍历树节点,并使用了 if 语句来检查当前节点是否为空。

7. 函数定义和调用(Function Definition and Invocation):

  • 代码定义了一个公共方法 inorderTraversal,供外部调用。

8. 基本语法(Basic Syntax):

  • 代码使用了基本的 Java 语法,如类定义、方法定义、循环结构、条件语句等。

以上就是解决这个问题的详细步骤,希望能够为各位提供启发和帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一直学习永不止步

谢谢您的鼓励,我会再接再厉的!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值