一、题目描述
给你一个整数数组 nums
,其中恰好有两个元素只出现一次,其余所有元素均出现两次。 找出只出现一次的那两个元素。你可以按 任意顺序 返回答案。
你必须设计并实现线性时间复杂度的算法且仅使用常量额外空间来解决此问题。
示例 1:
输入:nums = [1,2,1,3,2,5] 输出:[3,5] 解释:[5, 3] 也是有效的答案。
示例 2:
输入:nums = [-1,0] 输出:[-1,0]
示例 3:
输入:nums = [0,1] 输出:[1,0]
提示:
2 <= nums.length <= 3 * 10^4
-2^31 <= nums[i] <= 2^31 - 1
- 除两个只出现一次的整数外,
nums
中的其他数字都出现两次
二、解题思路
-
首先对数组进行一次遍历,并将所有元素进行异或操作。由于异或操作的性质,成对的元素异或结果为0,所以最后的结果是两个只出现一次的元素的异或结果。
-
在得到两个只出现一次的元素的异或结果后,我们需要找到这两个元素在位上的不同之处。我们可以通过找到异或结果中为1的任意位(假设为第k位),因为这一位必然是两个元素不同的地方。
-
根据第k位是否为1,将原数组分为两组,每组包含一个只出现一次的元素和若干成对的元素。由于成对的元素异或结果为0,所以每组异或的结果就是只出现一次的元素。
-
最后,将两组异或的结果分别作为返回数组的两个元素即可。
三、具体代码
class Solution {
public int[] singleNumber(int[] nums) {
// 步骤1:对所有元素进行异或操作
int xorResult = 0;
for (int num : nums) {
xorResult ^= num;
}
// 步骤2:找到xorResult中为1的任意位
int k = xorResult & (-xorResult);
// 步骤3:根据第k位是否为1将原数组分为两组,并分别进行异或操作
int num1 = 0, num2 = 0;
for (int num : nums) {
if ((num & k) == 0) {
num1 ^= num;
} else {
num2 ^= num;
}
}
// 步骤4:返回结果
return new int[]{num1, num2};
}
}
这段代码首先对所有元素进行异或,找到区分两个只出现一次的元素的特征位,然后根据这个特征位将数组分为两组,最后分别对两组进行异或操作得到结果。
四、时间复杂度和空间复杂度
1. 时间复杂度
- 第一步,对所有元素进行异或操作,需要遍历数组一次,时间复杂度为O(n),其中n是数组
nums
的长度。 - 第二步,找到
xorResult
中为1的任意位,这一步是常数时间操作,因为位操作的时间复杂度是O(1)。 - 第三步,根据第k位是否为1将原数组分为两组,并分别进行异或操作,这又需要遍历数组一次,时间复杂度为O(n)。
综上所述,总的时间复杂度是两个O(n)的操作相加,依然是O(n)。
2. 空间复杂度
- 在整个算法过程中,除了输入数组
nums
外,我们只使用了几个额外的变量xorResult
、k
、num1
和num2
,这些变量都是固定数量的,与输入数组的大小无关。 - 因此,算法使用的额外空间是常数级别的,空间复杂度为O(1)。
五、总结知识点
-
位运算:
- 异或运算(^):这是一种位运算,它将两个位进行比较,如果不同则结果为1,相同则结果为0。在这个算法中,异或运算被用来找出两个只出现一次的数,因为成对的数异或后会互相抵消。
- 与运算(&):这也是一种位运算,它将两个位进行比较,如果都为1则结果为1,否则结果为0。
- 取反运算(~):这是一种位运算,它将操作数的每一位取反。
- 与负数进行与运算(& -num):这是找出一个数中最低位的1的一种技巧,也称为“最低有效位”(Lowest Set Bit)。
-
数组遍历:
- 使用增强型
for
循环(for-each
循环)来遍历数组中的每个元素。
- 使用增强型
-
逻辑判断:
- 使用
if-else
语句来根据条件(这里是第k位是否为1)将数组元素分为两组,并对每组元素进行异或操作。
- 使用
-
数组创建与返回:
- 使用数组初始化的简写形式
new int[]{num1, num2}
来创建并返回一个包含两个元素的数组。
- 使用数组初始化的简写形式
-
位操作技巧:
- 利用异或运算的性质来找出两个只出现一次的数。
- 使用与运算和负数的与运算来找到两个只出现一次的数的区分位。
以上就是解决这个问题的详细步骤,希望能够为各位提供启发和帮助。