pytorch国内镜像下载

一分钟下载完pytorch

-i https://pypi.tuna.tsinghua.edu.cn/simple

pip install torch==2.3.1 --index-url https://download.pytorch.org/whl/cu118

找网址之前就不说了 

可以参考

CUDA卸载&&重装-CSDN博客

【深度学习:入门】如何配置CUDA,使用gpu本地训练_cuda怎么使用_氯化氯的博客-CSDN博客

先总结一下之前容易犯的错误

1.下载cuda的时候别改下载地址

2.自己配置上环境变量,怎么配置可以参考第一个链接

这篇博客的重点是将怎么用国内镜像下载pytorch

首先在pytorch获得对应的下载链接

能用pip就不要conda

能用pip就不要conda

能用pip就不要conda

无论你是在cmd或者anaconda或者哪里按 命令行能用pip别用conda

conda install pytorch==1.13.0 torchvision==0.14.0 torchaudio==0.13.0 pytorch-cuda=11.6 -c pytorch -c nvidia

这个conda命令看不懂

pip install torch==1.13.0+cu116 torchvision==0.14.0+cu116 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu116

pip命令就简单了后面的网址乐意改成啥改成啥

可以参考CUDA11.6的pytorch环境搭建 - CSDN文库

我用到的源是-f https://download.pytorch.org/whl/torch_stable.html

用的时候

pip install torch==1.13.0+cu116 torchvision==0.14.0+cu116 torchaudio==0.13.0 -f https://download.pytorch.org/whl/torch_stable.html

两分钟基本就安装好了

### Linux环境下通过PyTorch镜像下载支持GPU的安装包 要在Linux环境中成功配置并下载支持GPU的PyTorch版本,可以按照以下方法操作。以下是具体实现方式: #### 1. 更新系统和依赖项 在开始之前,确保系统的软件包管理器是最新的,并已安装必要的依赖项。对于基于Debian/Ubuntu的发行版,可以通过运行以下命令来更新系统以及安装NVIDIA显卡驱动程序[^1]。 ```bash sudo apt update && sudo apt upgrade -y sudo apt install nvidia-driver-<version> -y ``` 注意:`<version>`应替换为适合您硬件的具体驱动版本号。 完成驱动安装后重启计算机以使更改生效。 #### 2. 设置Python环境 推荐使用Conda创建独立的虚拟环境以便更好地管理和隔离项目所需的库文件[^3]。如果尚未安装Miniconda或者Anaconda,则可以从其官网获取最新稳定版本进行安装。 初始化一个新的Conda环境如下所示: ```bash conda create --name pytorch_env python=3.8 conda activate pytorch_env ``` 这里我们命名为`pytorch_env`作为工作空间名称;同时指定使用的Python解释器版本为3.8。 #### 3. 添加清华Pip镜像源 为了加速其他Python扩展模块的获取过程,建议修改默认pip索引地址指向清华大学开源软件镜像服务站点: ```bash pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple ``` 此设置仅需执行一次即可长期有效。 #### 4. 下载对应CUDA版本的PyTorch GPU包 访问官方提供的工具页面[https://pytorch.org/get-started/locally/]找到适合自己计算平台架构、操作系统类型及所选框架特性的预编译二进制轮子链接[^2]。通常情况下会给出类似这样的指令模板供复制粘贴到终端里直接调用: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 ``` 上述例子中的参数说明: - `cu113`: 表明该构建针对的是CUDA Toolkit v11.3。 根据实际需求调整合适的cuda标签前缀(`cuXX`)匹配本地已经激活成功的gpu runtime environment之后再提交给shell解析器处理。 --- ### 总结 综上所述,在Linux平台上借助国内高效稳定的镜像资源能够显著提升整个开发流程效率。不仅限于基础组件部署阶段,还包括后期维护期间各类第三方插件同步升级等方面均能体现出明显优势。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值