-
两边取对数, l g ( n ) = l g ( 2 m + l ) lg(n)=lg(2^m+l) lg(n)=lg(2m+l), m = [ l g ( n ) ] , l = n − 2 m = n − 2 [ l g ( n ) ] m=[lg(n)], l=n-2^m=n-2^{[lg(n)]} m=[lg(n)],l=n−2m=n−2[lg(n)]
-
第一问对x-0.5取顶,第二问对x+0.5取底
-
[ [ m α ] n / α ] = [ ( m α − { m α } ) n / α ] = m n [[m\alpha]n/\alpha]=[(m\alpha-\{m\alpha\})n/\alpha]=mn [[mα]n/α]=[(mα−{mα})n/α]=mn
-
not even wrong
-
[ n x ] = [ n ( [ x ] + { x } ) ] = n [ x ] + [ n { x } ] = n [ x ] [nx]=[n([x]+\{x\})]=n[x]+[n\{x\}]=n[x] [nx]=[n([x]+{x})]=n[x]+[n{x}]=n[x],得到 0 ≤ n { x } < 1 0\le n\{x\}<1 0≤n{x}<1
-
不知道。
-
X n = X n m o d m + [ n / m ] = n m o d m + [ n / m ] X_n=X_{n\ mod\ m}+[n/m]=n\ mod\ m+[n/m] Xn=Xn mod m+[n/m]=n mod m+[n/m]
-
使用反证法即可。
-
m n − 1 q = m q − n n q < m ( n / m + 1 ) − n n q = m n q < 1 q \frac{m}{n}-\frac{1}{q}=\frac{mq-n}{nq}<\frac{m(n/m+1)-n}{nq}=\frac{m}{nq}<\frac{1}{q} nm−q1=nqmq−n<nqm(n/m+1)−n=nqm<q1,因此不会出现相同表示。
-
原式= ⌈ x + 1 / 2 ⌉ − [ ( 2 x + 1 ) / 4 不是偶数 ] \lceil x+1/2\rceil-[(2x+1)/4不是偶数] ⌈x+1/2⌉−[(2x+1)/4不是偶数]。当{x}=1/2时,结果是其最近的偶数,否则是其最近的整数。
-
防止出现边界是整数的情形。
-
答案的方法比我想的好很多,建议直接看答案。我考虑分类讨论。
-
都是无理数:假设都是有理数,考虑二者分母分子的最小公倍数即可,因此至少有一个是无理数。然后只要证明, 1 / α + 1 / β = 1 1/\alpha+1/\beta=1 1/α+1/β=1,即可证明都是无理数。
证明两个spec不相交,只要证明对于任意正整数n,前n个正整数一定都出现且仅出现在这两个spec之一中。
-
当n=0时,显然不成立。 x ≠ 0 x\neq 0 x=0时, ( x m o d n y ) m o d y = ( x − n y [ x / n y ] ) m o d y = x m o d y − 0 = x m o d y (x\ mod\ ny)mod\ y=(x-ny[x/ny])mod\ y=xmod\ y-0=xmod\ y (x mod ny)mod y=(x−ny[x/ny])mod y=xmod y−0=xmod y
-
有的。将(3.24)替换即可。记得使用性质(3.11)去除顶。
-
比较无脑,直接代入每种情况,解方程就行了。 n m o d 3 = 1 + ( ( ω − 1 ) ω n − ( ω + 2 ) ω 2 n ) / 3 n\ mod\ 3=1+((\omega -1)\omega^n-(\omega+2)\omega^{2n})/3 n mod 3=1+((ω−1)ωn−(ω+2)ω2n)/3
-
看书上答案。
-
书P74页相关内容。额外考虑到的实际上只有 k ≥ n k\ge n k≥n的情况。注意条件判断右侧不等号,要求j至少有 n α − v n\alpha-v nα−v,因此只要考虑 ⌊ n α ⌋ \lfloor n\alpha\rfloor ⌊nα⌋的情况,此时左侧不等号始终成立,只要考虑右侧情况,共有 ⌈ ( ⌊ n α ⌋ + v ) α − 1 ⌉ − n ≤ ⌈ v α − 1 ⌉ \lceil(\lfloor n\alpha\rfloor+v)\alpha^{-1}\rceil-n\le\lceil v\alpha^{-1}\rceil ⌈(⌊nα⌋+v)α−1⌉−n≤⌈vα−1⌉种可能。
-
若b不是整数,取 x = b x=b x=b即可,因此b一定是整数。b是整数时,使用底的定义,显然成立。
-
x ( ⌊ β / x ⌋ − ⌈ α / x ⌉ + 1 ) ( ⌊ β / x ⌋ + ⌈ α / x ⌉ ) 2 \frac{x(\lfloor \beta/x\rfloor-\lceil \alpha/x\rceil+1)(\lfloor \beta/x\rfloor+\lceil \alpha/x\rceil)}{2} 2x(⌊β/x⌋−⌈α/x⌉+1)(⌊β/x⌋+⌈α/x⌉).和答案步骤一样。展开以后与答案相同。
-
⌊ M / l g 10 ⌋ + 1 \lfloor M/lg10\rfloor+1 ⌊M/lg10⌋+1,lg以2为底。观察得到:对于第一个十进制下有n位的 2 m 2^m 2m,其首位一定是1.
-
S n = ∑ k ≥ 1 ⌊ n / 2 k + 1 2 ⌋ = n , T n = ∑ k ≥ 1 2 k ⌊ n / 2 k + 1 2 ⌋ 2 = n ( n + 1 ) S_n=\sum_{k\ge 1}\lfloor n/2^k+\frac{1}{2}\rfloor=n,T_n=\sum_{k\ge 1}2^k\lfloor n/2^k+\frac{1}{2}\rfloor^2= n(n+1) Sn=∑k≥1⌊n/2k+21⌋=n,Tn=∑k≥12k⌊n/2k+21⌋2=n(n+1)
书上答案的递推式没有问题。可以从n的二进制表示出发, S n S_n Sn的含义等价于n的二进制表示, T n T_n Tn就有点麻烦了,可能书上答案更好理解。
-
只要验证第 m ( m − 1 ) 2 + p , 0 < p ≤ m \frac{m(m-1)}{2}+p, 0<p\le m 2m(m−1)+p,0<p≤m个元素是m,即 m − 1 / 2 ≤ m ( m − 1 ) + 2 p < m + 1 / 2 m-1/2\le \sqrt{m(m-1)+2p}<m+1/2 m−1/2≤m(m−1)+2p<m+1/2,根号内配平即可证明成立。
-
在 S p e c ( α ) Spec(\alpha) Spec(α)中出现k次的正整数,会在 S p e c ( α / ( α + 1 ) ) Spec(\alpha/(\alpha+1)) Spec(α/(α+1))出现k+1次。只要证明 ∀ n ∈ N + , N ( α / ( α + 1 ) , n ) − N ( α , n ) = n + 1 \forall n\in N^+, N(\alpha/(\alpha+1), n)-N(\alpha, n)=n+1 ∀n∈N+,N(α/(α+1),n)−N(α,n)=n+1即可。
根据定理(3.14),可以将上式化简为
⌈ ( n + 1 ) ( α + 1 ) / α ⌉ − 1 − ⌈ ( n + 1 ) / α ⌉ + 1 = n + 1 + ⌈ ( n + 1 ) / α ⌉ − ⌈ ( n + 1 ) / α ⌉ = n + 1 \begin{aligned} &\lceil(n+1)(\alpha+1)/\alpha\rceil-1-\lceil(n+1)/\alpha\rceil+1\\ &=n+1+\lceil(n+1)/\alpha\rceil-\lceil(n+1)/\alpha\rceil\\ &=n+1 \end{aligned} ⌈(n+1)(α+1)/α⌉−1−⌈(n+1)/α⌉+1=n+1+⌈(n+1)/α⌉−⌈(n+1)/α⌉=n+1 -
高德纳数定义: K 0 = 1 , K n + 1 = 1 + m i n ( 2 K ⌊ n / 2 ⌋ , 3 K ⌊ n / 3 ⌋ ) K_0=1,K_{n+1}=1+min(2K_{\lfloor n/2\rfloor},3K_{\lfloor n/3\rfloor}) K0=1,Kn+1=1+min(2K⌊n/2⌋,3K⌊n/3⌋)
如果 m i n ( 2 K ⌊ n / 2 ⌋ , 3 K ⌊ n / 3 ⌋ ) ≥ n min(2K_{\lfloor n/2\rfloor},3K_{\lfloor n/3\rfloor})\ge n min(2K⌊n/2⌋,3K⌊n/3⌋)≥n,就可以证明 K n + 1 ≥ n + 1 K_{n+1}\ge n+1 Kn+1≥n+1。
对于n=0,1,成立;对于n>1, m i n ( 2 K ⌊ n / 2 ⌋ , 3 K ⌊ n / 3 ⌋ ) ≥ m i n ( 2 ⌊ n / 2 ⌋ , 3 ⌊ n / 3 ⌋ ) min(2K_{\lfloor n/2\rfloor},3K_{\lfloor n/3\rfloor})\ge min(2\lfloor n/2\rfloor, 3\lfloor n/3\rfloor) min(2K⌊n/2⌋,3K⌊n/3⌋)≥min(2⌊n/2⌋,3⌊n/3⌋) ,通过这个式子并没有办法导出结论。注意到:可以证明加强命题 K n + 1 ≥ n + 2 K_{n+1}\ge n+2 Kn+1≥n+2,这是很容易使用归纳法证明的,因此可以得到结论:原命题成立,且加强命题成立。
书上答案提到了这种方法,但是给出了另一种方法的详细解答。
-
辅助约瑟夫数定义: D 0 ( q ) = 1 , D n ( q ) = ⌈ q q − 1 D n − 1 ( q ) ⌉ D_0^{(q)}=1,D_n^{(q)}=\lceil \frac{q}{q-1}D_{n-1}^{(q)}\rceil D0(q)=1,Dn(q)=⌈q−1qDn−1(q)⌉
n=0时,结论成立;假设n<k时结论成立,当n=k时,有 ⌈ ( q q − 1 ) n ⌉ ≤ D n ( q ) ≤ ⌈ q ( q q − 1 ) n ⌉ \lceil(\frac{q}{q-1})^{n} \rceil\le D_n^{(q)}\le \lceil q(\frac{q}{q-1})^n \rceil ⌈(q−1q)n⌉≤Dn(q)≤⌈q(q−1q)n⌉,左侧不等号显然是原命题的加强结论,因此只要证明原命题右侧不等号正确即可。
因为没办法直接看出怎么找到加强结论,假设存在与n无关的常数C,满足 D n ( q ) ≤ q ( q q − 1 ) n + C D_n^{(q)}\le q(\frac{q}{q-1})^n+C Dn(q)≤q(q−1q)n+C。对于n+1,若 D n + 1 ( q ) = ⌈ q q − 1 D n ( q ) ⌉ ≤ ⌈ q ( q q − 1 ) n + 1 + C q / ( q − 1 ) ⌉ ≤ q ( q q − 1 ) n + 1 + C D_{n+1}^{(q)}=\lceil \frac{q}{q-1}D_n^{(q)}\rceil\le\lceil q(\frac{q}{q-1})^{n+1}+Cq/(q-1)\rceil\le q(\frac{q}{q-1})^{n+1}+C Dn+1(q)=⌈q−1qDn(q)⌉≤⌈q(q−1q)n+1+Cq/(q−1)⌉≤q(q−1q)n+1+C成立,则可证明。只要 C q / ( q − 1 ) + 1 ≤ C Cq/(q-1)+1\le C Cq/(q−1)+1≤C成立,即 C ≤ 1 − q C\le 1-q C≤1−q即可。其中,C=1-q对于 D 0 q D_0^{q} D0q 成立,根据归纳法,原命题成立。
-
对于 D n = 2 m d − a , a ∈ { 0 , 1 } , D n + m = 3 m d − a D_n=2^md-a, a\in\{0,1\},D_{n+m}=3^md-a Dn=2md−a,a∈{0,1},Dn+m=3md−a。
又 D 0 = 1 = 2 1 × 1 − 1 , D 1 = 1 = 2 1 × 1 − 0 D_0=1=2^1\times1-1,D_1=1=2^1\times1-0 D0=1=21×1−1,D1=1=21×1−0,因此奇数和偶数的个数均为无穷多个。
-
不会。
-
我放弃。
-
注意到 α + α − 1 = m , α 2 + α − 2 = m 2 − 2 , α 4 + α − 4 = ( m 2 − 2 ) 2 − 2 \alpha+\alpha^{-1}=m, \alpha^2+\alpha^{-2}=m^2-2, \alpha^4+\alpha^{-4}=(m^2-2)^2-2 α+α−1=m,α2+α−2=m2−2,α4+α−4=(m2−2)2−2,考虑是否对于所有n, α 2 n + α − 2 n \alpha^{2^n}+\alpha^{-2^n} α2n+α−2n为整数。这很容易证明。同时注意到,由于 α > 1 \alpha>1 α>1,因此 α − 2 n < 1 , α 2 n + α − 2 n = ⌈ α 2 n ⌉ \alpha^{-2^{n}}<1,\alpha^{2^n}+\alpha^{-2^n}=\lceil \alpha^{2^n}\rceil α−2n<1,α2n+α−2n=⌈α2n⌉
之后,使用数学归纳法,证明 X n = α 2 n + α − 2 n X_n=\alpha^{2^n}+\alpha^{-2^n} Xn=α2n+α−2n,然后换为取顶的结果即可。
-
⌊ x ⌋ + ⌊ y ⌋ + ⌊ x + y ⌋ ≤ ⌊ 2 x ⌋ + ⌊ 2 y ⌋ \lfloor x\rfloor+\lfloor y\rfloor+\lfloor x+y\rfloor\le\lfloor2x\rfloor+\lfloor2y\rfloor ⌊x⌋+⌊y⌋+⌊x+y⌋≤⌊2x⌋+⌊2y⌋
⟺ ⌊ { x } + { y } ⌋ ≤ ⌊ 2 { x } ⌋ + ⌊ 2 { y } ⌋ \iff \lfloor\{x\}+\{y\}\rfloor\le\lfloor2\{x\}\rfloor+\lfloor2\{y\}\rfloor ⟺⌊{x}+{y}⌋≤⌊2{x}⌋+⌊2{y}⌋
可以分类讨论解出上式。
-
我放弃,这题还是看答案好了。
-
从几何角度考虑,棋盘每条直线与圆相交两次,共相交8n-4次,因此答案为8n-4
对于 ∑ k = 1 n − 1 f ( n , k ) \sum_{k=1}^{n-1}f(n,k) ∑k=1n−1f(n,k),自然想到k是高度(第k行的方格中,完全处于圆中的个数),因此 f ( n , k ) = 4 ⌊ r 2 − k 2 ⌋ f(n,k)=4\lfloor r^2-k^2\rfloor f(n,k)=4⌊r2−k2⌋是解(r是圆的半径,思考几何意义)。
-
-
设 n = 2 m , f ( 2 m + 1 ) = f ( 2 m ) + 2 m ( m + 1 ) n=2^m,f(2^{m+1})=f(2^m)+2^m(m+1) n=2m,f(2m+1)=f(2m)+2m(m+1),可以当作和式,解出 f ( 2 m ) = ( m − 1 ) 2 m + 1 f(2^m)=(m-1)2^{m}+1 f(2m)=(m−1)2m+1。然后应该不难推出通式。
如果令 m = ⌈ l g n ⌉ m=\lceil lgn\rceil m=⌈lgn⌉,则 f ( n ) = f ( 2 m ) − m ( 2 m − n ) = m n − 2 m + 1 f(n)=f(2^m)-m(2^m-n)=mn-2^m+1 f(n)=f(2m)−m(2m−n)=mn−2m+1
-
注意到, ⌈ lg 2 k ⌉ = ⌈ lg k ⌉ + 1 , ⌈ lg ( 2 k − 1 ) ⌉ = ⌈ lg k ⌉ + [ k > 1 ] \lceil\lg2k\rceil=\lceil\lg k\rceil+1,\lceil \lg(2k-1)\rceil=\lceil \lg k\rceil+[k>1] ⌈lg2k⌉=⌈lgk⌉+1,⌈lg(2k−1)⌉=⌈lgk⌉+[k>1]。因此,分奇偶考虑n>3的情况,然后单独讨论n=3的情况即可。
-
-
泰勒展开,结果为 n 2 + 3 n + 2 m o d n = 2 m o d n n^2+3n+2\ mod\ n=2modn n2+3n+2 mod n=2modn
-
式子挺复杂的,考虑 S n + 1 − S n S_{n+1}-S_n Sn+1−Sn,此时lglgk是固定值n,然后对于lgk进行分析,会得到 S n + 1 − S n = 1 / 2 n , S 1 = 1 , S n = 2 − 1 / 2 n − 1 S_{n+1}-S_n=1/2^n,S_1=1,S_n=2-1/2^{n-1} Sn+1−Sn=1/2n,S1=1,Sn=2−1/2n−1
-
对于 m < n / 2 m<n/2 m<n/2,左式=0,右式= ⌊ m 2 n ⌋ − ⌊ m 2 n ⌋ = 0 \lfloor\frac{m^2}n\rfloor-\lfloor \frac{m^2}{n}\rfloor=0 ⌊nm2⌋−⌊nm2⌋=0
对于 n / 2 ≤ m < n n/2\le m<n n/2≤m<n,左式= ∑ 0 ≤ k < m [ k ≥ n − m ] = m − ( n − m ) = 2 m − n \sum_{0\le k<m}[k\ge n-m]=m-(n-m)=2m-n ∑0≤k<m[k≥n−m]=m−(n−m)=2m−n,右式= ⌊ m 2 n ⌋ − ⌊ ( n − m ) 2 n ⌋ = 2 m − n \lfloor \frac{m^2}{n}\rfloor-\lfloor \frac{(n-m)^2}{n}\rfloor=2m-n ⌊nm2⌋−⌊n(n−m)2⌋=2m−n
对于 m ≥ n m\ge n m≥n,令 m = n q m + r m , k = n q k + r k m=nq_m+r_m,k=nq_k+r_k m=nqm+rm,k=nqk+rk,右式= ⌊ r m 2 / n ⌋ + n q m 2 + 2 q m r m − ⌊ f m i n ( r m ) 2 / n ⌋ \lfloor r_m^2/n\rfloor+nq_m^2+2q_mr_m-\lfloor f_{min}(r_m)^2/n\rfloor ⌊rm2/n⌋+nqm2+2qmrm−⌊fmin(rm)2/n⌋,左式= m q m + ∑ 0 ≤ k < n ( ⌊ r m + r k n ⌋ − ⌊ r k n ⌋ ) = m q m + q m r m + ⌊ r m 2 n ⌋ − ⌊ f m i n ( r m ) 2 / n ⌋ mq_m+\sum_{0\le k<n}(\lfloor \frac{r_m+r_k}{n}\rfloor-\lfloor \frac{r_k}{n}\rfloor)=mq_m+q_mr_m+\lfloor\frac{r_m^2}{n}\rfloor-\lfloor f_{min}(r_m)^2/n\rfloor mqm+∑0≤k<n(⌊nrm+rk⌋−⌊nrk⌋)=mqm+qmrm+⌊nrm2⌋−⌊fmin(rm)2/n⌋
左式与右式比较,只要 m q m + q m r m = n q m 2 + 2 q m r m mq_m+q_mr_m=nq_m^2+2q_mr_m mqm+qmrm=nqm2+2qmrm即可。将m用 n q m + r m nq_m+r_m nqm+rm代入即可证明。
-
放弃了,不做了。