《具体数学》第三章课后习题个人解答

  1. 两边取对数, l g ( n ) = l g ( 2 m + l ) lg(n)=lg(2^m+l) lg(n)=lg(2m+l), m = [ l g ( n ) ] , l = n − 2 m = n − 2 [ l g ( n ) ] m=[lg(n)], l=n-2^m=n-2^{[lg(n)]} m=[lg(n)],l=n2m=n2[lg(n)]

  2. 第一问对x-0.5取顶,第二问对x+0.5取底

  3. [ [ m α ] n / α ] = [ ( m α − { m α } ) n / α ] = m n [[m\alpha]n/\alpha]=[(m\alpha-\{m\alpha\})n/\alpha]=mn [[mα]n/α]=[(mα{mα})n/α]=mn

  4. not even wrong

  5. [ n x ] = [ n ( [ x ] + { x } ) ] = n [ x ] + [ n { x } ] = n [ x ] [nx]=[n([x]+\{x\})]=n[x]+[n\{x\}]=n[x] [nx]=[n([x]+{x})]=n[x]+[n{x}]=n[x],得到 0 ≤ n { x } < 1 0\le n\{x\}<1 0n{x}<1

  6. 不知道。

  7. X n = X n   m o d   m + [ n / m ] = n   m o d   m + [ n / m ] X_n=X_{n\ mod\ m}+[n/m]=n\ mod\ m+[n/m] Xn=Xn mod m+[n/m]=n mod m+[n/m]

  8. 使用反证法即可。

  9. m n − 1 q = m q − n n q < m ( n / m + 1 ) − n n q = m n q < 1 q \frac{m}{n}-\frac{1}{q}=\frac{mq-n}{nq}<\frac{m(n/m+1)-n}{nq}=\frac{m}{nq}<\frac{1}{q} nmq1=nqmqn<nqm(n/m+1)n=nqm<q1,因此不会出现相同表示。

  10. 原式= ⌈ x + 1 / 2 ⌉ − [ ( 2 x + 1 ) / 4 不是偶数 ] \lceil x+1/2\rceil-[(2x+1)/4不是偶数] x+1/2[(2x+1)/4不是偶数]。当{x}=1/2时,结果是其最近的偶数,否则是其最近的整数。

  11. 防止出现边界是整数的情形。

  12. 答案的方法比我想的好很多,建议直接看答案。我考虑分类讨论。

  13. 都是无理数:假设都是有理数,考虑二者分母分子的最小公倍数即可,因此至少有一个是无理数。然后只要证明, 1 / α + 1 / β = 1 1/\alpha+1/\beta=1 1/α+1/β=1,即可证明都是无理数。

    证明两个spec不相交,只要证明对于任意正整数n,前n个正整数一定都出现且仅出现在这两个spec之一中。

  14. 当n=0时,显然不成立。 x ≠ 0 x\neq 0 x=0时, ( x   m o d   n y ) m o d   y = ( x − n y [ x / n y ] ) m o d   y = x m o d   y − 0 = x m o d   y (x\ mod\ ny)mod\ y=(x-ny[x/ny])mod\ y=xmod\ y-0=xmod\ y (x mod ny)mod y=(xny[x/ny])mod y=xmod y0=xmod y

  15. 有的。将(3.24)替换即可。记得使用性质(3.11)去除顶。

  16. 比较无脑,直接代入每种情况,解方程就行了。 n   m o d   3 = 1 + ( ( ω − 1 ) ω n − ( ω + 2 ) ω 2 n ) / 3 n\ mod\ 3=1+((\omega -1)\omega^n-(\omega+2)\omega^{2n})/3 n mod 3=1+((ω1)ωn(ω+2)ω2n)/3

  17. 看书上答案。

  18. 书P74页相关内容。额外考虑到的实际上只有 k ≥ n k\ge n kn的情况。注意条件判断右侧不等号,要求j至少有 n α − v n\alpha-v nαv,因此只要考虑 ⌊ n α ⌋ \lfloor n\alpha\rfloor nα的情况,此时左侧不等号始终成立,只要考虑右侧情况,共有 ⌈ ( ⌊ n α ⌋ + v ) α − 1 ⌉ − n ≤ ⌈ v α − 1 ⌉ \lceil(\lfloor n\alpha\rfloor+v)\alpha^{-1}\rceil-n\le\lceil v\alpha^{-1}\rceil ⌈(⌊nα+v)α1nvα1种可能。

  19. 若b不是整数,取 x = b x=b x=b即可,因此b一定是整数。b是整数时,使用底的定义,显然成立。

  20. x ( ⌊ β / x ⌋ − ⌈ α / x ⌉ + 1 ) ( ⌊ β / x ⌋ + ⌈ α / x ⌉ ) 2 \frac{x(\lfloor \beta/x\rfloor-\lceil \alpha/x\rceil+1)(\lfloor \beta/x\rfloor+\lceil \alpha/x\rceil)}{2} 2x(⌊β/xα/x+1)(⌊β/x+α/x⌉).和答案步骤一样。展开以后与答案相同。

  21. ⌊ M / l g 10 ⌋ + 1 \lfloor M/lg10\rfloor+1 M/lg10+1,lg以2为底。观察得到:对于第一个十进制下有n位的 2 m 2^m 2m,其首位一定是1.

  22. S n = ∑ k ≥ 1 ⌊ n / 2 k + 1 2 ⌋ = n , T n = ∑ k ≥ 1 2 k ⌊ n / 2 k + 1 2 ⌋ 2 = n ( n + 1 ) S_n=\sum_{k\ge 1}\lfloor n/2^k+\frac{1}{2}\rfloor=n,T_n=\sum_{k\ge 1}2^k\lfloor n/2^k+\frac{1}{2}\rfloor^2= n(n+1) Sn=k1n/2k+21=n,Tn=k12kn/2k+212=n(n+1)

    书上答案的递推式没有问题。可以从n的二进制表示出发, S n S_n Sn的含义等价于n的二进制表示, T n T_n Tn就有点麻烦了,可能书上答案更好理解。

  23. 只要验证第 m ( m − 1 ) 2 + p , 0 < p ≤ m \frac{m(m-1)}{2}+p, 0<p\le m 2m(m1)+p,0<pm个元素是m,即 m − 1 / 2 ≤ m ( m − 1 ) + 2 p < m + 1 / 2 m-1/2\le \sqrt{m(m-1)+2p}<m+1/2 m1/2m(m1)+2p <m+1/2,根号内配平即可证明成立。

  24. S p e c ( α ) Spec(\alpha) Spec(α)中出现k次的正整数,会在 S p e c ( α / ( α + 1 ) ) Spec(\alpha/(\alpha+1)) Spec(α/(α+1))出现k+1次。只要证明 ∀ n ∈ N + , N ( α / ( α + 1 ) , n ) − N ( α , n ) = n + 1 \forall n\in N^+, N(\alpha/(\alpha+1), n)-N(\alpha, n)=n+1 nN+,N(α/(α+1),n)N(α,n)=n+1即可。

    根据定理(3.14),可以将上式化简为
    ⌈ ( n + 1 ) ( α + 1 ) / α ⌉ − 1 − ⌈ ( n + 1 ) / α ⌉ + 1 = n + 1 + ⌈ ( n + 1 ) / α ⌉ − ⌈ ( n + 1 ) / α ⌉ = n + 1 \begin{aligned} &\lceil(n+1)(\alpha+1)/\alpha\rceil-1-\lceil(n+1)/\alpha\rceil+1\\ &=n+1+\lceil(n+1)/\alpha\rceil-\lceil(n+1)/\alpha\rceil\\ &=n+1 \end{aligned} ⌈(n+1)(α+1)/α1⌈(n+1)/α+1=n+1+⌈(n+1)/α⌈(n+1)/α=n+1

  25. 高德纳数定义: K 0 = 1 , K n + 1 = 1 + m i n ( 2 K ⌊ n / 2 ⌋ , 3 K ⌊ n / 3 ⌋ ) K_0=1,K_{n+1}=1+min(2K_{\lfloor n/2\rfloor},3K_{\lfloor n/3\rfloor}) K0=1,Kn+1=1+min(2Kn/2,3Kn/3)

    如果 m i n ( 2 K ⌊ n / 2 ⌋ , 3 K ⌊ n / 3 ⌋ ) ≥ n min(2K_{\lfloor n/2\rfloor},3K_{\lfloor n/3\rfloor})\ge n min(2Kn/2,3Kn/3)n,就可以证明 K n + 1 ≥ n + 1 K_{n+1}\ge n+1 Kn+1n+1

    对于n=0,1,成立;对于n>1, m i n ( 2 K ⌊ n / 2 ⌋ , 3 K ⌊ n / 3 ⌋ ) ≥ m i n ( 2 ⌊ n / 2 ⌋ , 3 ⌊ n / 3 ⌋ ) min(2K_{\lfloor n/2\rfloor},3K_{\lfloor n/3\rfloor})\ge min(2\lfloor n/2\rfloor, 3\lfloor n/3\rfloor) min(2Kn/2,3Kn/3)min(2n/2,3n/3⌋) ,通过这个式子并没有办法导出结论。注意到:可以证明加强命题 K n + 1 ≥ n + 2 K_{n+1}\ge n+2 Kn+1n+2,这是很容易使用归纳法证明的,因此可以得到结论:原命题成立,且加强命题成立。

    书上答案提到了这种方法,但是给出了另一种方法的详细解答。

  26. 辅助约瑟夫数定义: D 0 ( q ) = 1 , D n ( q ) = ⌈ q q − 1 D n − 1 ( q ) ⌉ D_0^{(q)}=1,D_n^{(q)}=\lceil \frac{q}{q-1}D_{n-1}^{(q)}\rceil D0(q)=1,Dn(q)=q1qDn1(q)

    n=0时,结论成立;假设n<k时结论成立,当n=k时,有 ⌈ ( q q − 1 ) n ⌉ ≤ D n ( q ) ≤ ⌈ q ( q q − 1 ) n ⌉ \lceil(\frac{q}{q-1})^{n} \rceil\le D_n^{(q)}\le \lceil q(\frac{q}{q-1})^n \rceil ⌈(q1q)nDn(q)q(q1q)n,左侧不等号显然是原命题的加强结论,因此只要证明原命题右侧不等号正确即可。

    因为没办法直接看出怎么找到加强结论,假设存在与n无关的常数C,满足 D n ( q ) ≤ q ( q q − 1 ) n + C D_n^{(q)}\le q(\frac{q}{q-1})^n+C Dn(q)q(q1q)n+C。对于n+1,若 D n + 1 ( q ) = ⌈ q q − 1 D n ( q ) ⌉ ≤ ⌈ q ( q q − 1 ) n + 1 + C q / ( q − 1 ) ⌉ ≤ q ( q q − 1 ) n + 1 + C D_{n+1}^{(q)}=\lceil \frac{q}{q-1}D_n^{(q)}\rceil\le\lceil q(\frac{q}{q-1})^{n+1}+Cq/(q-1)\rceil\le q(\frac{q}{q-1})^{n+1}+C Dn+1(q)=q1qDn(q)q(q1q)n+1+Cq/(q1)⌉q(q1q)n+1+C成立,则可证明。只要 C q / ( q − 1 ) + 1 ≤ C Cq/(q-1)+1\le C Cq/(q1)+1C成立,即 C ≤ 1 − q C\le 1-q C1q即可。其中,C=1-q对于 D 0 q D_0^{q} D0q 成立,根据归纳法,原命题成立。

  27. 对于 D n = 2 m d − a , a ∈ { 0 , 1 } , D n + m = 3 m d − a D_n=2^md-a, a\in\{0,1\},D_{n+m}=3^md-a Dn=2mda,a{0,1}Dn+m=3mda

    D 0 = 1 = 2 1 × 1 − 1 , D 1 = 1 = 2 1 × 1 − 0 D_0=1=2^1\times1-1,D_1=1=2^1\times1-0 D0=1=21×11,D1=1=21×10,因此奇数和偶数的个数均为无穷多个。

  28. 不会。

  29. 我放弃。

  30. 注意到 α + α − 1 = m , α 2 + α − 2 = m 2 − 2 , α 4 + α − 4 = ( m 2 − 2 ) 2 − 2 \alpha+\alpha^{-1}=m, \alpha^2+\alpha^{-2}=m^2-2, \alpha^4+\alpha^{-4}=(m^2-2)^2-2 α+α1=m,α2+α2=m22,α4+α4=(m22)22,考虑是否对于所有n, α 2 n + α − 2 n \alpha^{2^n}+\alpha^{-2^n} α2n+α2n为整数。这很容易证明。同时注意到,由于 α > 1 \alpha>1 α>1,因此 α − 2 n < 1 , α 2 n + α − 2 n = ⌈ α 2 n ⌉ \alpha^{-2^{n}}<1,\alpha^{2^n}+\alpha^{-2^n}=\lceil \alpha^{2^n}\rceil α2n<1,α2n+α2n=α2n

    之后,使用数学归纳法,证明 X n = α 2 n + α − 2 n X_n=\alpha^{2^n}+\alpha^{-2^n} Xn=α2n+α2n,然后换为取顶的结果即可。

  31. ⌊ x ⌋ + ⌊ y ⌋ + ⌊ x + y ⌋ ≤ ⌊ 2 x ⌋ + ⌊ 2 y ⌋ \lfloor x\rfloor+\lfloor y\rfloor+\lfloor x+y\rfloor\le\lfloor2x\rfloor+\lfloor2y\rfloor x+y+x+y2x+2y

       ⟺    ⌊ { x } + { y } ⌋ ≤ ⌊ 2 { x } ⌋ + ⌊ 2 { y } ⌋ \iff \lfloor\{x\}+\{y\}\rfloor\le\lfloor2\{x\}\rfloor+\lfloor2\{y\}\rfloor ⌊{x}+{y}⌋2{x}⌋+2{y}⌋

    可以分类讨论解出上式。

  32. 我放弃,这题还是看答案好了。

  33. 从几何角度考虑,棋盘每条直线与圆相交两次,共相交8n-4次,因此答案为8n-4

    对于 ∑ k = 1 n − 1 f ( n , k ) \sum_{k=1}^{n-1}f(n,k) k=1n1f(n,k),自然想到k是高度(第k行的方格中,完全处于圆中的个数),因此 f ( n , k ) = 4 ⌊ r 2 − k 2 ⌋ f(n,k)=4\lfloor r^2-k^2\rfloor f(n,k)=4r2k2是解(r是圆的半径,思考几何意义)。

    1. n = 2 m , f ( 2 m + 1 ) = f ( 2 m ) + 2 m ( m + 1 ) n=2^m,f(2^{m+1})=f(2^m)+2^m(m+1) n=2m,f(2m+1)=f(2m)+2m(m+1),可以当作和式,解出 f ( 2 m ) = ( m − 1 ) 2 m + 1 f(2^m)=(m-1)2^{m}+1 f(2m)=(m1)2m+1。然后应该不难推出通式。

      如果令 m = ⌈ l g n ⌉ m=\lceil lgn\rceil m=lgn,则 f ( n ) = f ( 2 m ) − m ( 2 m − n ) = m n − 2 m + 1 f(n)=f(2^m)-m(2^m-n)=mn-2^m+1 f(n)=f(2m)m(2mn)=mn2m+1

    2. 注意到, ⌈ lg ⁡ 2 k ⌉ = ⌈ lg ⁡ k ⌉ + 1 , ⌈ lg ⁡ ( 2 k − 1 ) ⌉ = ⌈ lg ⁡ k ⌉ + [ k > 1 ] \lceil\lg2k\rceil=\lceil\lg k\rceil+1,\lceil \lg(2k-1)\rceil=\lceil \lg k\rceil+[k>1] lg2k=lgk+1,lg(2k1)⌉=lgk+[k>1]。因此,分奇偶考虑n>3的情况,然后单独讨论n=3的情况即可。

  34. 泰勒展开,结果为 n 2 + 3 n + 2   m o d   n = 2 m o d n n^2+3n+2\ mod\ n=2modn n2+3n+2 mod n=2modn

  35. 式子挺复杂的,考虑 S n + 1 − S n S_{n+1}-S_n Sn+1Sn,此时lglgk是固定值n,然后对于lgk进行分析,会得到 S n + 1 − S n = 1 / 2 n , S 1 = 1 , S n = 2 − 1 / 2 n − 1 S_{n+1}-S_n=1/2^n,S_1=1,S_n=2-1/2^{n-1} Sn+1Sn=1/2n,S1=1,Sn=21/2n1

  36. 对于 m < n / 2 m<n/2 m<n/2,左式=0,右式= ⌊ m 2 n ⌋ − ⌊ m 2 n ⌋ = 0 \lfloor\frac{m^2}n\rfloor-\lfloor \frac{m^2}{n}\rfloor=0 nm2nm2=0

    对于 n / 2 ≤ m < n n/2\le m<n n/2m<n,左式= ∑ 0 ≤ k < m [ k ≥ n − m ] = m − ( n − m ) = 2 m − n \sum_{0\le k<m}[k\ge n-m]=m-(n-m)=2m-n 0k<m[knm]=m(nm)=2mn,右式= ⌊ m 2 n ⌋ − ⌊ ( n − m ) 2 n ⌋ = 2 m − n \lfloor \frac{m^2}{n}\rfloor-\lfloor \frac{(n-m)^2}{n}\rfloor=2m-n nm2n(nm)2=2mn

    对于 m ≥ n m\ge n mn,令 m = n q m + r m , k = n q k + r k m=nq_m+r_m,k=nq_k+r_k m=nqm+rm,k=nqk+rk,右式= ⌊ r m 2 / n ⌋ + n q m 2 + 2 q m r m − ⌊ f m i n ( r m ) 2 / n ⌋ \lfloor r_m^2/n\rfloor+nq_m^2+2q_mr_m-\lfloor f_{min}(r_m)^2/n\rfloor rm2/n+nqm2+2qmrmfmin(rm)2/n,左式= m q m + ∑ 0 ≤ k < n ( ⌊ r m + r k n ⌋ − ⌊ r k n ⌋ ) = m q m + q m r m + ⌊ r m 2 n ⌋ − ⌊ f m i n ( r m ) 2 / n ⌋ mq_m+\sum_{0\le k<n}(\lfloor \frac{r_m+r_k}{n}\rfloor-\lfloor \frac{r_k}{n}\rfloor)=mq_m+q_mr_m+\lfloor\frac{r_m^2}{n}\rfloor-\lfloor f_{min}(r_m)^2/n\rfloor mqm+0k<n(⌊nrm+rknrk⌋)=mqm+qmrm+nrm2fmin(rm)2/n

    左式与右式比较,只要 m q m + q m r m = n q m 2 + 2 q m r m mq_m+q_mr_m=nq_m^2+2q_mr_m mqm+qmrm=nqm2+2qmrm即可。将m用 n q m + r m nq_m+r_m nqm+rm代入即可证明。

  37. 放弃了,不做了。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值