《具体数学》第二章课后习题-考试题个人解答

  1. ∑ k = 1 n ( − 1 ) k 4 k 2 − 1 k = ∑ k = 1 n ( − 1 ) k 4 ( 1 2 k + 1 + 1 2 k − 1 ) = ∑ k = 1 n ( − 1 ) k 4 ( 2 k + 1 ) + ∑ k + 1 = 1 n ( − 1 ) k + 1 4 ( 2 k + 1 ) = ∑ k = 1 n ( − 1 ) k 4 ( 2 k + 1 ) − ∑ k = 0 n − 1 ( − 1 ) k 4 ( 2 k + 1 ) = ( − 1 ) n 4 ( 2 n + 1 ) − 1 4 \begin{aligned} \sum_{k=1}^{n}\frac{(-1)^k}{4k^2-1}k&=\sum_{k=1}^n\frac{(-1)^k}{4}(\frac{1}{2k+1}+\frac{1}{2k-1})\\ &=\sum_{k=1}^n\frac{(-1)^k}{4(2k+1)}+\sum_{k+1=1}^{n}\frac{(-1)^{k+1}}{4(2k+1)}\\ &=\sum_{k=1}^n\frac{(-1)^k}{4(2k+1)}-\sum_{k=0}^{n-1}\frac{(-1)^k}{4(2k+1)}\\ &=\frac{(-1)^n}{4(2n+1)}-\frac{1}{4} \end{aligned} k=1n4k21(1)kk=k=1n4(1)k(2k+11+2k11)=k=1n4(2k+1)(1)k+k+1=1n4(2k+1)(1)k+1=k=1n4(2k+1)(1)kk=0n14(2k+1)(1)k=4(2n+1)(1)n41

  2. 12种。问就是拿程序跑出来的。

    其实可以考虑2100的质因数分解, 2100 = 2 2 × 3 × 5 2 × 7 = x y 2100=2^2\times3\times5^2\times7=xy 2100=22×3×52×7=xy,当且仅当x与y奇偶性不同时有解,不难证明。若x和y都为偶数,1050会分解成连续整数+0.5的和。也就是只要考虑 3 × 5 2 × 7 3\times5^2\times7 3×52×7的分配情况,共(1+1)(2+1)(1+1)=12种。

  3. ∑ k ≥ 2 ( ζ ( k ) − 1 ) = ∑ k ≥ 2 ( ∑ j ≥ 1 1 j k − 1 ) = ∑ k , j ≥ 2 1 j k = ∑ j ≥ 2 ∑ k ≥ 2 1 j k = ∑ j ≥ 2 1 j 2 1 1 − 1 / j = ∑ j ≥ 2 1 j − 1 − 1 j = 1 \begin{aligned} \sum_{k\ge2}(\zeta(k)-1)&=\sum_{k\ge2}(\sum_{j\ge1}\frac{1}{j^k}-1)\\ &=\sum_{k,j\ge2}\frac{1}{j^k}\\ &=\sum_{j\ge2}\sum_{k\ge2}\frac{1}{j^k}\\ &=\sum_{j\ge2}\frac{1}{j^2}\frac{1}{1-1/j}\\ &=\sum_{j\ge2}\frac{1}{j-1}-\frac{1}{j}\\ &=1 \end{aligned} k2(ζ(k)1)=k2(j1jk11)=k,j2jk1=j2k2jk1=j2j2111/j1=j2j11j1=1

    话说倒数第二行的等号真的能拆吗?好久没看级数了,感觉可以。

    对于第二问,倒数第三行会变成 1 / j 2 1/j^2 1/j2,从而得到结果3/4.

  4. 分情况讨论

    2 n ≤ x < 2 n + 1 2n\le x<2n+1 2nx<2n+1,左式= ∑ k = 0 2 n m i n ( k , x − k ) = 0 + 1 + ⋯ + n + ( x − n − 1 ) + ⋯ + ( x − 2 n ) = n ( x − n ) \sum_{k=0}^{2n}min(k, x-k)=0+1+\dots+n+(x-n-1)+\dots+(x-2n)=n(x-n) k=02nmin(k,xk)=0+1++n+(xn1)++(x2n)=n(xn)

    右式= ( x − 1 ) + ( x − 3 ) + ⋯ + ( x − 2 n + 1 ) = n x − n 2 (x-1)+(x-3)+\dots+(x-2n+1)=nx-n^2 (x1)+(x3)++(x2n+1)=nxn2,成立

    2 n + 1 ≤ x < 2 n + 2 2n+1\le x<2n+2 2n+1x<2n+2,左式= ∑ k = 0 2 n + 1 m i n ( k , x − k ) = 0 + 1 + ⋯ + n + ( x − n − 1 ) + ⋯ + ( x − 2 n ) + ( x − 2 n − 1 ) = ( n + 1 ) ( x − n − 1 ) \sum_{k=0}^{2n+1}min(k, x-k)=0+1+\dots+n+(x-n-1)+\dots+(x-2n)+(x-2n-1)=(n+1)(x-n-1) k=02n+1min(k,xk)=0+1++n+(xn1)++(x2n)+(x2n1)=(n+1)(xn1)

    右式= ( x − 1 ) + ( x − 3 ) + ⋯ + ( x − 2 n + 1 ) + ( x − 2 n − 1 ) = n x − n 2 + x − 2 n − 1 = ( n + 1 ) ( x − n − 1 ) (x-1)+(x-3)+\dots+(x-2n+1)+(x-2n-1)=nx-n^2+x-2n-1=(n+1)(x-n-1) (x1)+(x3)++(x2n+1)+(x2n1)=nxn2+x2n1=(n+1)(xn1)=左式,成立。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值