构造题是比赛和解决问题的过程中比较常见的题型。他们通常要求解题者通过观察问题的结构和规律,找到一种通用过的方法或模式,使得在问题规模增大时,依然能够高效地得到答案
·观察问题规模的增长:了解问题随规模的增大,答案的变化趋势。帮助找到通用的解决方案。
·推广规律:尝试将你观察到的规律推广到最大的问题规模上。这可能涉及到数学归纳法或者其他类型的思考方式。
·考虑状态转移。
·模式识别:尝试寻找问题中的模式或者特征,这有助于更好地理解问题的本质。
·实践和练习:通过解决大量的构造题,会逐渐培养出发现规律和应用通用方法的能力。
·注意特殊情况:一些构造题在特定的情况下可能会有不同的解法或规律。
构造题目的特点
较高的自由度
一道题的构造方式可能有多种,但往往会有一种相对简单且满足题意的
形式灵活和多样
不存在一个同样的解法互殴套路(具备灵活的思维)
解决这类问题
·分析题目的要求和条件
弄清楚问题的背景和目标
·尝试特例和极端情况
试图找一些特殊情况下的解法
·尝试模式和规律
观察题目中是否存在一些明显的模式或者规律,并推广到更一般的情况。
·尝试逆向构造
从问题的方面思考也可以得到有效啊的线索
·灵活应用已知知识
·使用数学归纳法
构造题的应用场景
数学问题 图论问题 字符串处理 组合与排列 游戏策略 逻辑推理 数据结构(如堆 树 图)
动态规划 贪心算法 模拟问题
经典例题解析 01
小蓝喜欢数学,有一天遇到一个有趣的数学题:1/x+1/y+1/z
现在给定一个正整数N,小蓝想知道当x.y,z取何值时,上述等式成立。请你帮助小蓝找到满足条件的整数x,y.z
输入:
输入包含一个正整数N(1<=N<=1000)
输出
如果存在满足条件的整数x,y,z,则输出一个满足条件的解,以空格分隔。如果有多组解,请输出任意一组即可。
如果不存在满足条件的解,则输出“No Solution”
经典例题解析 02
数学老师给小明出了一道等差数列求和的题目但是粗心的小明忘记了一部分的数列,只记得其中N个整数。现在给出这N个整数,小明想知道包含这N个整数的最短的等差数列有几项,请输出这几项。
输入描述 输入的第一行包含一个整数N。第二行包含N个整数A1,A2,....An (注意A1~An并不一定时等差数列中的顺序给出)
(对于所有评测用例,2<=n<=100000,0<=Ai<=10^9)
输出描述 输出一个序列表示答案
所有数字之间的鼓励最小间隔是公差吗?
等差数列的最小间隔(实际上不是公差),例如{2,5,7},最小的间隔是2,但公差不是2,是1.
这是一个GCD构造问题,可以计算给定数之间的所有间隔的最小公约数(GCD)来确定,把n个数据排序,计算他们的间隔,对所有间隔做GCD,结果为公差。
同时通过最小值,最大值,公差,可以计算出等差数列的最少数量。
从最小值到最大值依次输出即可。
经典例题解析 03
给定一个正整数N,你需要构造一个包含N个节点的编号为a,b.a,b需要满足:(a&1)*(b&1)=1.每条边的权值为所连接得到两个节点的编号和,使得最长边和最短边之间的差值小于等于3.
输入描述:
输入包含一个正整数N(2<=N<=1000)
输出描述:
先输出一个M 表示总共M条连边。
然后输出包含M行,每行包含两个整数,表示途中一条边的两个节点编号。