Acwing:社交距离【二分+前缀和】

博主分享了一道需要在O(nlogn)时间复杂度内解决的数组题目,尝试使用二分查找方法,虽然未能找到所有17个案例的正确解,但已覆盖16个。文章详细介绍了思路,包括预处理前缀和数组,确认答案区间,并在check函数中通过前缀和判断合法位置。代码中展示了实现过程,但存在一个案例未通过,希望读者帮助找出bug。
摘要由CSDN通过智能技术生成

我也不想瞒着大家,这道题一共17个案例,这个方法只能过16个,另外一个是答案错误,但是本菜找不到bug,希望大家帮我找一下,既然过了16个案例,那么说明也有一定的可取性【为了不误人子弟,本菜才写这些】

说一下本菜的思路吧,这道题的数据说明我们要用o(nlogn)的时间复杂度的算法,所以我想到的一个就是二分,当然这道题的最优解是贪心;

下面是本菜的思路:

先用fix[N]数组预处理前缀和数组

(1):确认答案存在的区间为1~n;

(2):进入check函数,参数为mid:

1:用前缀和数组判断每一个合法的位置,即在一个点左右mid的范围内没有牛【这个可以用前缀和数组用o(1)的时间复杂度来判断;

2:如果合法,那么我们就用这个位置更新合法位置的最大值和最小值【这里用mx和mi两个变量来记录】

上面就算本菜的思路,下面是本菜的代码:

#include<iostream>
#include<algorithm>
using namespace std;

const int N=100010;

int fix[N],st[N];
int n;


bool check(int t){
    
    int mi=1e9,mx=-1;
    
    for(int i=1;i<=n;i++){
        
        if(st[i]) continue;
        
        int p1,p2;

        if(i+t<=n) p1=i+t;
        else p1=n+1;

        if(i-t>=1) p2=i-t;
        else p2=0;
        
        if(fix[p1-1]-fix[i]==0&&fix[i-1]-fix[p2]==0)
            mi=min(mi,i); mx=max(mx,i);

        if(mx!=-1&&mi!=1e9){
            if(mx-mi>=t) return 1;
        }
        
    }
    return 0;
    
    
}

int main(){
    
    cin>>n;
    
    for(int i=1;i<=n;i++){
        char a; cin>>a;
        if(a=='\n') continue;
        st[i]=a-'0';
        fix[i]=st[i]+fix[i-1];
    }
    
    int l=0,r=n;
    
    while(l<r){
        
        int mid=l+r+1>>1;

        if(check(mid)) l=mid;
        else r=mid-1;
        
    }
    
    cout<<l;
    
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值