计算系数——二项式+组合数(数学)

博客围绕多项式用二项式定理拆开后对应项系数的计算问题展开。探讨了如何求特定系数,提出通过公式①直接计算阶乘相除和利用公式②递推两种思路,还提醒计算时注意取余、爆int问题,太大可用快速幂求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

题目

思路

代码


题目

思路

        多项式 (ax+by)^k 可以用二项式定理拆开,即 (ax+by)^k = \sum C_k^i(ax)^i(by)^{k-i}.

        则 x^ny^m 对应的项为 C_k^n(ax)^n(by)^{m}=a^nb^mC_k^nx^ny^m ,系数为 a^nb^mC_k^n ,其中m=k-n。

一个问题是如何求 C_k^n

        存在公式 C_k^n= \frac{A_k^n}{A_n^n}=\frac{k!}{n!(k-n)!}    ①

        也有 C_k^n= C_k^{n-1}+C_{k-1}^{n-1}           ②

        我第一个想法就是通过公式①直接计算阶乘然后相除得出结果。(忘了有什么问题了

        第二个是利用公式②进行递推。(见代码)

for(int i=0;i<=k;i++){
    for(int j=0;j<=i;j++){ // 注意j<=i
         if(j==0) c[i][j] = 1;
         else c[i][j] = (c[i-1][j]+c[i-1][j-1])%mod;
    }
}

a^nb^m 直接算就好,只是需要注意取余和爆int。太大了可以用快速幂求解。

代码

import java.util.*;

class Main{
    static int a,b,k,n,m;
    static long[][] c = new long[1010][1010];
    public static void main(String[] args){
        Scanner in = new Scanner(System.in);
        a = in.nextInt();
        b = in.nextInt();
        k = in.nextInt();
        n = in.nextInt();
        m = in.nextInt();
        for(int i=0;i<=k;i++){
            for(int j=0;j<=i;j++){ // 注意j<=i
                if(j==0) c[i][j] = 1;
                else c[i][j] = (c[i-1][j]+c[i-1][j-1])%10007;
            }
        }
        long res = 1;
        res *= c[k][n];
        while(n-->0) res = (res*a)%10007;
        while(m-->0) res = (res*b)%10007;
        System.out.println(res);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值