给定一个长度为 n
的 0 索引整数数组 nums
。初始位置为 nums[0]
。
每个元素 nums[i]
表示从索引 i
向前跳转的最大长度。换句话说,如果你在 nums[i]
处,你可以跳转到任意 nums[i + j]
处:
0 <= j <= nums[i]
i + j < n
返回到达 nums[n - 1]
的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]
。
思路:贪心,不断更新能跳的更远的地方。
用ed 记录 每次的起点能跳的最远的地方。
当i枚举到ed时,说明此时要跳了,这里不需要在意是由哪个点开始跳的,
因为这里的可能起点是 上一次起点+1 到ed 这段区间中的其中一个点,但是不变的是,不管选择哪个点,都是要跳一次。
然后再把 更远的地方 赋值给ed,新起点能跳的更远的地方。
由于是一定存在答案的,也就是说,不考虑最后一个点的情况,前面的点能跳的最远的距离一定是大于等于n,所以为了避免冗余,我们不枚举最后一个点。
class Solution {
public:
int jump(vector<int>& nums) {
int max_juli=0;
int ed=0;
int step=0;
for(int i=0;i<nums.size()-1;i++)
{
max_juli=max(max_juli,i+nums[i]);
//需要跳了
if(ed==i)
{
ed = max_juli;
step++;
}
}
return step;
}
};