儿童节那天有 KK 位小朋友到小明家做客。
小明拿出了珍藏的巧克力招待小朋友们。
小明一共有 NN 块巧克力,其中第 ii 块是 Hi×WiHi×Wi 的方格组成的长方形。
为了公平起见,小明需要从这 NN 块巧克力中切出 KK 块巧克力分给小朋友们。
切出的巧克力需要满足:
- 形状是正方形,边长是整数
- 大小相同
例如一块 6×56×5 的巧克力可以切出 66 块 2×22×2 的巧克力或者 22 块 3×33×3 的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小明计算出最大的边长是多少么?
输入格式
第一行包含两个整数 NN 和 KK。
以下 NN 行每行包含两个整数 HiHi 和 WiWi。
输入保证每位小朋友至少能获得一块 1×11×1 的巧克力。
输出格式
输出切出的正方形巧克力最大可能的边长。
数据范围
1≤N,K≤1051≤N,K≤105,
1≤Hi,Wi≤1051≤Hi,Wi≤105
输入样例:
2 10
6 5
5 6
输出样例:
2
代码如下
#include <iostream>
using namespace std;
const int N =1e5 +10;
int a[N] ,b[N];
int k ,n;
bool check(int x)
{
int sum =0;
for(int i =0;i <n;i ++)
{
sum +=(a[i]/x)*(b[i]/x); //算蛋糕分完后可以给几个人吃
if(sum >=k) return true;
}
return false;
}
int main ()
{
cin>>n>>k;
for(int i =0;i <n;i ++)
cin>>a[i]>>b[i];
int l =1 ,r = N;
while (r >l) //在二分前,要想清楚单调性,究竟是单调递增还是递减,显然此题是递减
{
int mid =l +r +1>>1; //因为 l =mid;所以要多加一个1,至于为啥,自己
//举一个例子 eg: l =1,r =2;c++ 是下取整故会陷入死循环
if(check(mid)) l =mid;
else r =mid -1;
}
cout<<l;// 二分的答案是唯一的,r也行
return 0;
}