python实现excel数据转流程图

目录

原理

准备条件

代码

展示


原理

从Excel表格中读取数据,然后根据列顺序,构建一个树形结构,并将该树形结构写入一个Word文档中,同时使用不同的标题级别来表示树的层次结构。可以设定从某一列开始后面都是兄弟节点。用xmind实现流程图展示。

准备条件:

  1. python环境+pandas、docx库
  2. xmind

代码

import pandas as pd
from docx import Document
from docx.shared import Pt

# 读取 Excel 表格数据。在这里填写文件名。代码和文件放到同一文件下
df = pd.read_excel("test.xlsx")

# 设定第m列后面的列都是第m列数据的子节点。这里设定是3
m = 3

# 创建一个字典表示树的层次结构
tree = {"信息": {}}

n = m - 1

# 遍历 Excel 数据,构建树的层次关系
for index, row in df.iterrows():
    current_level = tree["信息"]
    for i in range(n):  # 前 n 列作为层次结构
        column_name = df.columns[i]
        cell_value = row[i]
        if cell_value not in current_level:
            current_level[cell_value] = {}
        current_level = current_level[cell_value]
    # 第 n+1 列及其后作为第 n 列的子节点
    if isinstance(current_level, list):
        current_level.append(row.iloc[n:])
    else:
        current_level[row.iloc[n]] = row.iloc[n+1:].tolist()

# 创建一个新的 Word 文档
doc = Document()

# 定义函数将树形结构写入 Word 文档
def write_tree_to_doc(tree, doc, level=0):
    for key, value in tree.items():
        p = doc.add_paragraph(str(key))
        # 设置标题级别
        p.style = f"Heading {level+1}"
        # 调整字体大小
        for run in p.runs:
            font = run.font
            font.size = Pt(12)
        if isinstance(value, dict):
            write_tree_to_doc(value, doc, level + 1)
        elif isinstance(value, list):
            for item in value:
                doc.add_paragraph(str(item), style=f"Heading {level+2}")

# 将树形结构写入 Word 文档
write_tree_to_doc(tree, doc)

# 保存 Word 文档
doc.save("output.docx")

print("ok'")

展示

测试文档:

将文件和代码py文件放到同一目录,pycarm运行代码:

 打开xmind,点击“文件”——>"导入",形成流程图

生成流程图:

 如果要将子节点复制到“中心主题”,剪切复制即可。

结语

希望对你有用,欢迎留言交流。获取python解释器、pycharm和xmind安装包,可关注公众号“PMC数模”回复“001”获取。

### 使用Python将C语言代码换为Excel流程图 为了实现这一目标,可以采用多步处理方式。首先解析C语言源码提取其结构化信息,接着利用这些信息构建流程图模型,最后借助特定库将此模型导出至Excel文件。 #### 解析C语言代码并提取控制流信息 对于C语言代码分析来说,`pycparser`是一个非常有用的工具[^1]。该库能够把原始的.C文件化为抽象语法树(AST),从而方便后续操作: ```python from pycparser import c_parser, c_ast, parse_file def get_c_code_structure(file_path): ast = parse_file(file_path, use_cpp=True) return ast ``` #### 构建流程图表结构 一旦获得了AST表示形式之后,则可以通过遍历节点创建相应的图形元素列表。这里推荐使用`graphviz`来辅助完成这一步骤,因为它支持多种布局算法并且易于集成到其他应用当中去: ```python from graphviz import Digraph def build_flowchart(ast_node): dot = Digraph(comment='The Round Table') # 假设已经实现了add_nodes_and_edges函数用于递归添加节点与边关系 add_nodes_and_edges(dot, ast_node) return dot.source ``` #### 将流程图保存为Excel格式 最终阶段是要把这些可视化的内容嵌入到电子表格里头。此时可选用`openpyxl`或`pandas`配合`xlsxwriter`来进行实际编写工作。下面给出了一种简单的方式展示如何做到这一点: ```python import pandas as pd from openpyxl.drawing.image import Image from io import BytesIO def save_to_excel(flowchart_svg_string, output_filename="output.xlsx"): df = pd.DataFrame({'A': []}) # 创建空白DataFrame with pd.ExcelWriter(output_filename, engine='xlsxwriter') as writer: workbook = writer.book worksheet = workbook.add_worksheet() buffer = BytesIO() flowchart_svg_string.encode('utf-8').tofile(buffer) img = Image(buffer) worksheet.insert_image(0, 0, '', {'image_data': buffer}) df.to_excel(writer, sheet_name='Sheet1', index=False) ``` 上述过程展示了从读取C程序直至将其对应的流程图画入Excel文档的大致框架。需要注意的是,在真实场景下可能还需要考虑更多细节问题比如错误处理机制以及优化性能等方面。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PMC数模

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值