在学习和使用开源项目人脸识别https://github.com/ageitgey/face_recognition时遇到的dlib安装问题
dlib是一个现代的C++工具包,包含机器学习算法和工具,可用于解决多种实际问题。它被广泛应用于图像处理和计算机视觉相关的任务,例如面部检测、姿态估计、人脸识别等。
gitee上dlib的地址:(python3.9)https://gitee.com/billyme/python-dlib/raw/master/dist/dlib-19.23.0-cp39-cp39-win_amd64.whl
windows10安装dlib步骤:
1.首先在vscode中创新一个新的conda环境,如下:
(python为3.7,因为后续安装dlib要和python版本兼容)
conda create -n face python==3.7
2.需要安装cmake
直接在终端命令行输入命令 (可以使用清华镜像或者阿里镜像源)
pip install cmake
CMake是一个跨平台的自动化构建系统,它使用配置文件(称为CMakeLists.txt),这些文件定义了如何构建软件。CMake的主要功能是生成标准的构建环境文件,例如Unix的Makefile或Windows的Visual Studio工程文件。这样,开发者就可以使用本地的构建工具来编译和链接项目,而不需要为每个平台编写特定的构建脚本。
3.下载dlib离线版本dlib-19.17.99-cp37-cp37m-win_amd64.whl
4.终端输入命令
pip install dlib-19.17.99-cp37-cp37m-win_amd64.whl
5.需要安装PIL库
因为在import face_recognition时报错ModuleNotFoundError: No module named 'PIL',
所以需要安装pillow<9,要和python3.7环境兼容。
pip install "Pillow<9"
6.安装face_recognition
pip install face_recognition
Successfully built face-recognition-models
Installing collected packages: face-recognition-models, numpy, colorama, Click, face_recognition
Successfully installed Click-8.1.7 colorama-0.4.6 face-recognition-models-0.3.0 face_recognition-1.3.0 numpy-1.21.6
至此,代码demo可以正常运行
import face_recognition
image = face_recognition.load_image_file(r'examples\obama_small.jpg')
face_locations = face_recognition.face_locations(image)
print(face_locations)
[(68, 211, 175, 103)]
如果出现以下报错:
File "D:\02_anaconda\envs\face\lib\site-packages\face_recognition\api.py", line 105, in _raw_face_locations
return face_detector(img, number_of_times_to_upsample)
RuntimeError: Unsupported image type, must be 8bit gray or RGB image.
请考虑Numpy 版本更新,是否与 dlib 兼容? 将版本从 2.0.0 -> 1.26.4 降级来解决此错误。
Linux系统安装非常简单!
分别输入以下命令即可
pip install dlib
pip install face_recognition