【Java】—— 数据结构与集合源码:数据结构概述与线性表、二叉树

1. 数据结构剖析

我们举一个形象的例子来理解数据结构的作用:

战场:程序运行所需的软件、硬件环境

敌人:项目或模块的功能需求

指挥官:编写程序的程序员

士兵和装备:一行一行的代码

战术和策略:数据结构

上图:没有战术,打仗事倍功半

上图:有战术,打仗事半功倍

        总结:简单来说,数据结构,就是一种程序设计优化的方法论,研究数据的逻辑结构物理结构以及它们之间相互关系,并对这种结构定义相应的运算目的是加快程序的执行速度、减少内存占用的空间。

具体研究对象如下:

1.1 研究对象一:数据间逻辑关系

数据的逻辑结构指反映数据元素之间的逻辑关系,而与数据的存储无关,是独立于计算机的。

  • 集合结构:数据结构中的元素之间除了“同属一个集合” 的相互关系外,别无其他关系。集合元素之间没有逻辑关系。

  • 线性结构:数据结构中的元素存在一对一的相互关系。比如:排队。结构中必须存在唯一的首元素和唯一的尾元素。体现为:一维数组、链表、栈、队列

  • 树形结构:数据结构中的元素存在一对多的相互关系。比如:家谱、文件系统、组织架构

  • 图形结构:数据结构中的元素存在多对多的相互关系。比如:全国铁路网、地铁图

2. 一维数组

2.1 数组的特点

  • 在Java中,数组是用来存放同一种数据类型的集合,注意只能存放同一种数据类型。

//只声明了类型和长度
数据类型[]  数组名称 = new 数据类型[数组长度];

//声明了类型,初始化赋值,大小由元素个数决定
数据类型[] 数组名称 = {数组元素1,数组元素2,......}

例如:整型数组

例如:对象数组

  • 物理结构特点:

    • 申请内存:一次申请一大段连续的空间,一旦申请到了,内存就固定了。

    • 不能动态扩展(初始化给大了,浪费;给小了,不够用),插入快,删除和查找慢。

    • 存储特点:所有数据存储在这个连续的空间中,数组中的每一个元素都是一个具体的数据(或对象),所有数据都紧密排布,不能有间隔。

3. 链表

3.1 链表的特点

  • 逻辑结构:线性结构

  • 物理结构:不要求连续的存储空间

  • 存储特点:链表由一系列结点node(链表中每一个元素称为结点)组成,结点可以在代码执行过程中动态创建。每个结点包括两个部分:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域

  • 常见的链表结构有如下的形式:

3.2 自定义链表

3.2.1 自定义单向链表

/*
单链表中的节点。
节点是单向链表中基本的单元。
每一个节点Node都有两个属性:
    一个属性:是存储的数据。
    另一个属性:是下一个节点的内存地址。
 */
public class Node {

    // 存储的数据
    Object data;

    // 下一个节点的内存地址
    Node next;

    public Node(){

    }

    public Node(Object data, Node next){
        this.data = data;
        this.next = next;
    }
}
/*
链表类(单向链表)
 */
public class Link<E> {

    // 头节点
    Node header;

    private int size = 0;

    public int size(){
        return size;
    }

    // 向链表中添加元素的方法(向末尾添加)
    public void add(E data){
    //public void add(Object data){
        // 创建一个新的节点对象
        // 让之前单链表的末尾节点next指向新节点对象。
        // 有可能这个元素是第一个,也可能是第二个,也可能是第三个。
        if(header == null){
            // 说明还没有节点。
            // new一个新的节点对象,作为头节点对象。
            // 这个时候的头节点既是一个头节点,又是一个末尾节点。
            header = new Node(data, null);
        }else {
            // 说明头不是空!
            // 头节点已经存在了!
            // 找出当前末尾节点,让当前末尾节点的next是新节点。
            Node currentLastNode = findLast(header);
            currentLastNode.next = new Node(data, null);
        }
        size++;
    }

    /**
     * 专门查找末尾节点的方法。
     */
    private Node findLast(Node node) {
        if(node.next == null) {
            // 如果一个节点的next是null
            // 说明这个节点就是末尾节点。
            return node;
        }
        // 程序能够到这里说明:node不是末尾节点。
        return findLast(node.next); // 递归算法!
    }

    /*// 删除链表中某个数据的方法
    public void remove(Object obj){
        //略
    }

    // 修改链表中某个数据的方法
    public void modify(Object newObj){
        //略
    }

    // 查找链表中某个元素的方法。
    public int find(Object obj){
        //略
    }*/
}
3.2.2 自定义双向链表

/*
双向链表中的节点。
 */
public class Node<E> {
    Node prev;
    E data;
    Node next;

    Node(Node prev, E data, Node next) {
        this.prev = prev;
        this.data = data;
        this.next = next;
    }
}
/**
 * 链表类(双向链表)
 * @author 尚硅谷-宋红康
 * @create 15:05
 */
public class MyLinkedList<E> implements Iterable<E>{
    private Node first;  //链表的首元素
    private Node last;   //链表的尾元素
    private int total;

    public void add(E e){
        Node newNode = new Node(last, e, null);

        if(first == null){
            first = newNode;
        }else{
            last.next = newNode;
        }
        last = newNode;
        total++;
    }

    public int size(){
        return total;
    }

    public void delete(Object obj){
        Node find = findNode(obj);
        if(find != null){
            if(find.prev != null){
                find.prev.next = find.next;
            }else{
                first = find.next;
            }
            if(find.next != null){
                find.next.prev = find.prev;
            }else{
                last = find.prev;
            }

            find.prev = null;
            find.next = null;
            find.data = null;

            total--;
        }
    }

    private Node findNode(Object obj){
        Node node = first;
        Node find = null;

        if(obj == null){
            while(node != null){
                if(node.data == null){
                    find = node;
                    break;
                }
                node = node.next;
            }
        }else{
            while(node != null){
                if(obj.equals(node.data)){
                    find = node;
                    break;
                }
                node = node.next;
            }
        }
        return find;
    }

    public boolean contains(Object obj){
        return findNode(obj) != null;
    }

    public void update(E old, E value){
        Node find = findNode(old);
        if(find != null){
            find.data = value;
        }
    }

    @Override
    public Iterator<E> iterator() {
        return new Itr();
    }

    private class Itr implements Iterator<E>{
        private Node<E> node = first;

        @Override
        public boolean hasNext() {
            return node!=null;
        }

        @Override
        public E next() {
            E value = node.data;
            node = node.next;
            return value;
        }
    }
}

自定义双链表测试:

public class MyLinkedListTest {
    public static void main(String[] args) {
        MyLinkedList<String> my = new MyLinkedList<>();
        my.add("hello");
        my.add("world");
        my.add(null);
        my.add(null);
        my.add("java");
        my.add("java");
        my.add("atguigu");

        System.out.println("一共有:" + my.size());
        System.out.println("所有元素:");
        for (String s : my) {
            System.out.println(s);
        }
        System.out.println("-------------------------------------");
        System.out.println("查找java,null,haha的结果:");
        System.out.println(my.contains("java"));
        System.out.println(my.contains(null));
        System.out.println(my.contains("haha"));

        System.out.println("-------------------------------------");
        System.out.println("替换java,null后:");
        my.update("java","JAVA");
        my.update(null,"songhk");
        System.out.println("所有元素:");
        for (String s : my) {
            System.out.println(s);
        }
        System.out.println("-------------------------------------");
        System.out.println("删除hello,JAVA,null,atguigu后:");
        my.delete("hello");
        my.delete("JAVA");
        my.delete(null);
        my.delete("atguigu");
        System.out.println("所有元素:");
        for (String s : my) {
            System.out.println(s);
        }
    }
}

4. 栈

4.1 栈的特点

  • 栈(Stack)又称为堆栈或堆叠,是限制仅在表的一端进行插入和删除运算的线性表。

  • 栈按照先进后出(FILO,first in last out)的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶。每次删除(退栈)的总是删除当前栈中最后插入(进栈)的元素,而最先插入的是被放在栈的底部,要到最后才能删除。

  • 核心类库中的栈结构有Stack和LinkedList。

    • Stack就是顺序栈,它是Vector的子类。

    • LinkedList是链式栈。

  • 体现栈结构的操作方法:

    • peek()方法:查看栈顶元素,不弹出

    • pop()方法:弹出栈

    • push(E e)方法:压入栈

  • 时间复杂度:

    • 索引: O(n)

    • 搜索: O(n)

    • 插入: O(1)

    • 移除: O(1)

  • 图示:

4.2 Stack使用举例

public class TestStack {
    /*
    * 测试Stack
    * */
    @Test
    public void test1(){
        Stack<Integer> list = new Stack<>();
        list.push(1);
        list.push(2);
        list.push(3);

        System.out.println("list = " + list);

        System.out.println("list.peek()=" + list.peek());
        System.out.println("list.peek()=" + list.peek());
        System.out.println("list.peek()=" + list.peek());

/*
		System.out.println("list.pop() =" + list.pop());
		System.out.println("list.pop() =" + list.pop());
		System.out.println("list.pop() =" + list.pop());
		System.out.println("list.pop() =" + list.pop());//java.util.NoSuchElementException
*/

        while(!list.empty()){
            System.out.println("list.pop() =" + list.pop());
        }
    }

    /*
    * 测试LinkedList
    * */
    @Test
    public void test2(){
        LinkedList<Integer> list = new LinkedList<>();
        list.push(1);
        list.push(2);
        list.push(3);

        System.out.println("list = " + list);

        System.out.println("list.peek()=" + list.peek());
        System.out.println("list.peek()=" + list.peek());
        System.out.println("list.peek()=" + list.peek());

/*
		System.out.println("list.pop() =" + list.pop());
		System.out.println("list.pop() =" + list.pop());
		System.out.println("list.pop() =" + list.pop());
		System.out.println("list.pop() =" + list.pop());//java.util.NoSuchElementException
*/
        while(!list.isEmpty()){
            System.out.println("list.pop() =" + list.pop());
        }
    }
}

5. 队列

  • 队列(Queue)是只允许在一端进行插入,而在另一端进行删除的运算受限的线性表。

  • 队列是逻辑结构,其物理结构可以是数组,也可以是链表。

  • 队列的修改原则:队列的修改是依先进先出(FIFO)的原则进行的。新来的成员总是加入队尾(即不允许"加塞"),每次离开的成员总是队列头上的(不允许中途离队),即当前"最老的"成员离队。

  • 图示:

6. 树与二叉树

6.1 树的理解

专有名词解释:

结点:树中的数据元素都称之为结点

根节点:最上面的结点称之为根,一颗树只有一个根且由根发展而来,从另外一个角度来说,每个结点都可以认为是其子树的根

父节点:结点的上层结点,如图中,结点K的父节点是E、结点L的父节点是G

子节点:节点的下层结点,如图中,节点E的子节点是K节点、节点G的子节点是L节点

兄弟节点:具有相同父节点的结点称为兄弟节点,图中F、G、H互为兄弟节点

结点的度数:每个结点所拥有的子树的个数称之为结点的度,如结点B的度为3

树叶:度数为0的结点,也叫作终端结点,图中D、K、F、L、H、I、J都是树叶

非终端节点(或分支节点):树叶以外的节点,或度数不为0的节点。图中根、A、B、C、E、G都是

树的深度(或高度):树中结点的最大层次数,图中树的深度为4

结点的层数:从根节点到树中某结点所经路径上的分支树称为该结点的层数,根节点的层数规定为1,其余结点的层数等于其父亲结点的层数+1

同代:在同一棵树中具有相同层数的节点

6.2 二叉树的基本概念

        二叉树(Binary tree)是树形结构的一个重要类型。二叉树特点是每个结点最多只能有两棵子树,且有左右之分。许多实际问题抽象出来的数据结构往往是二叉树形式,二叉树的存储结构及其算法都较为简单,因此二叉树显得特别重要。

6.3 二叉树的遍历

  • 前序遍历:中左右(根左右)

    即先访问根结点,再前序遍历左子树,最后再前序遍历右子 树。前序遍历运算访问二叉树各结点是以根、左、右的顺序进行访问的。

  • 中序遍历:左中右(左根右)

    即先中前序遍历左子树,然后再访问根结点,最后再中序遍 历右子树。中序遍历运算访问二叉树各结点是以左、根、右的顺序进行访问的。

  • 后序遍历:左右中(左右根)

    即先后序遍历左子树,然后再后序遍历右子树,最后访问根 结点。后序遍历运算访问二叉树各结点是以左、右、根的顺序进行访问的。

前序遍历:ABDHIECFG

中序遍历:HDIBEAFCG

后序遍历:HIDEBFGCA

6.4 经典二叉树

1、满二叉树: 除最后一层无任何子节点外,每一层上的所有结点都有两个子结点的二叉树。 第n层的结点数是2的n-1次方,总的结点个数是2的n次方-1

2、完全二叉树: 叶结点只能出现在最底层的两层,且最底层叶结点均处于次底层叶结点的左侧。

3、二叉排序/查找/搜索树:即为BST (binary search/sort tree)。满足如下性质:

(1)若它的左子树不为空,则左子树上所有结点的值均小于它的根节点的值;
(2)若它的右子树上所有结点的值均大于它的根节点的值;
(3)它的左、右子树也分别为二叉排序/查找/搜索树。

对二叉查找树进行中序遍历,得到有序集合。便于检索。

4、平衡二叉树:(Self-balancing binary search tree,AVL)首先是二叉排序树,此外具有以下性质: (1)它是一棵空树或它的左右两个子树的高度差的绝对值不超过1 (2)并且左右两个子树也都是一棵平衡二叉树 (3)不要求非叶节点都有两个子结点

平衡二叉树的目的是为了减少二叉查找树的层次,提高查找速度。平衡二叉树的常用实现有红黑树、AVL、替罪羊树、Treap、伸展树等。

6、红黑树:即Red-Black Tree。红黑树的每个节点上都有存储位表示节点的颜色,可以是红(Red)或黑(Black)。

红黑树是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,它是在 1972 年由 Rudolf Bayer 发明的。红黑树是复杂的,但它的操作有着良好的最坏情况运行时间,并且在实践中是高效的:它可以在 O(log n)时间内做查找,插入和删除, 这里的 n 是树中元素的数目。

红黑树的特性:

  • 每个节点是红色或者黑色

  • 根节点是黑色

  • 每个叶子节点(NIL)是黑色。(注意:这里叶子节点,是指为空(NIL或NULL)的叶子节点)

  • 每个红色节点的两个子节点都是黑色的。(从每个叶子到根的所有路径上不能有两个连续的红色节点)

  • 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点(确保没有一条路径会比其他路径长出2倍)

当我们插入或删除节点时,可能会破坏已有的红黑树,使得它不满足以上5个要求,那么此时就需要进行处理,使得它继续满足以上的5个要求:

1、recolor :将某个节点变红或变黑

2、rotation :将红黑树某些结点分支进行旋转(左旋或右旋)

红黑树可以通过红色节点和黑色节点尽可能的保证二叉树的平衡。主要是用它来存储有序的数据,它的时间复杂度是O(logN),效率非常之高。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值