三元组表来表示矩阵,我们首先定义结构体:
typedef struct{
int i,j;//行,列
int e;
}Triple;
typedef struct {
Triple data[MAX+1];//这个+1其实是因为我们不用data[0]
int mu,nu,tu;//mu是行数,nu是列数,tu是非零元个数
}TSMatrix;
接下来是初始化矩阵的操作:
void init_matrix(TSMatrix &M,int row,int column)//初始化数组
{
M.mu = row;
M.nu = column;
M.tu = 0;
}
我们可以写一个打印矩阵的操作,更方便观察:
void print_matrix(TSMatrix M)//将三元组表表示的数组打印出来
{
int matrix[M.mu][M.nu];
for (int i=0 ; i<M.mu ; i++){
for (int j=0 ; j<M.nu ; j++){
matrix[i][j] = 0;
}
}
for (int i=1 ; i<= M.tu ; i++){
matrix[M.data[i].i-1][M.data[i].j-1] = M.data[i].e;
}
for (int i=0 ; i<M.mu ; i++){
for (int j=0 ; j <M.nu ; j++){
cout << matrix[i][j] << " ";
}
cout << endl;
}
}
三元组表中加入新的元素:
void push_matrix(TSMatrix &M,Triple element)//存入一个新的非零元素
{
if (M.tu == MAX) return;
M.tu++;
M.data[M.tu] = element;
}
之后是实现快速转置:
void transpose_matrix(TSMatrix &b,TSMatrix a)//转置a,并存在b中
{
/* 我们实现快速转置 */
b.mu = a.nu;
b.nu = a.mu;
b.tu = a.tu;
int num[a.nu+1] = {0};//用来保存a中每一列非零元的个数
int cpot[a.nu+1] = {0,1};//用来保存a中每一列第一个非零元在b中的位置(即在b中data[i]的那个i)
for (int i=1 ; i<=a.tu ; i++){
num[a.data[i].j]++;
}
for (int i=1 ; i<a.nu+1 ; i++){
if (i==1){
cpot[i]=1;
}
else{
cpot[i]=cpot[i-1]+num[i-1];
}
}
for (int j=1 ; j<=b.tu ; j++){
int pos=cpot[a.data[j].j];
b.data[pos].j=a.data[j].i;
b.data[pos].i=a.data[j].j;
b.data[pos].e=a.data[j].e;
++cpot[a.data[j].j];
}
}
完整代码如下:
/* 三元组表存储矩阵 */
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
using namespace std;
#define MAX 20
typedef struct{
int i,j;//行,列
int e;
}Triple;
typedef struct {
Triple data[MAX+1];//这个+1其实是因为我们不用data[0]
int mu,nu,tu;//mu是行数,nu是列数,tu是非零元个数
}TSMatrix;
void init_matrix(TSMatrix &M,int row,int column)//初始化数组
{
M.mu = row;
M.nu = column;
M.tu = 0;
}
void print_matrix(TSMatrix M)//将三元组表表示的数组打印出来
{
int matrix[M.mu][M.nu];
for (int i=0 ; i<M.mu ; i++){
for (int j=0 ; j<M.nu ; j++){
matrix[i][j] = 0;
}
}
for (int i=1 ; i<= M.tu ; i++){
matrix[M.data[i].i-1][M.data[i].j-1] = M.data[i].e;
}
for (int i=0 ; i<M.mu ; i++){
for (int j=0 ; j <M.nu ; j++){
cout << matrix[i][j] << " ";
}
cout << endl;
}
}
void push_matrix(TSMatrix &M,Triple element)//存入一个新的非零元素
{
if (M.tu == MAX) return;
M.tu++;
M.data[M.tu] = element;
}
void transpose_matrix(TSMatrix &b,TSMatrix a)//转置a,并存在b中
{
/* 我们实现快速转置 */
b.mu = a.nu;
b.nu = a.mu;
b.tu = a.tu;
int num[a.nu+1] = {0};//用来保存a中每一列非零元的个数
int cpot[a.nu+1] = {0,1};//用来保存a中每一列第一个非零元在b中的位置(即在b中data[i]的那个i)
for (int i=1 ; i<=a.tu ; i++){
num[a.data[i].j]++;
}
for (int i=1 ; i<a.nu+1 ; i++){
if (i==1){
cpot[i]=1;
}
else{
cpot[i]=cpot[i-1]+num[i-1];
}
}
for (int j=1 ; j<=b.tu ; j++){
int pos=cpot[a.data[j].j];
b.data[pos].j=a.data[j].i;
b.data[pos].i=a.data[j].j;
b.data[pos].e=a.data[j].e;
++cpot[a.data[j].j];
}
}
int main()
{
TSMatrix M;
cout << "enter the row and column" << endl;
int row,column;
cin >> row >> column;
init_matrix(M,row,column);
char s;
Triple element;
while (1){
cout << "i for insert, t for transport" << endl;
cin >> s;
if (s == 'i'){
cout << "enter the row, column and element" << endl;
cin >> element.i >> element.j >> element.e;
push_matrix(M,element);
print_matrix(M);
}
else if (s == 't'){
TSMatrix b;
transpose_matrix(b,M);
print_matrix(b);
}
}
}
运行时截图: