解法一:
解题思路:
根据题意只能买卖一次股票求最大的利润,翻译出就是求一个区间最大增区间的差值
一天一天看,就是保持两个变量
min:最小购入价格
maxprofit:最大利润
如果当日的股票价格比之前保存的最小值低就更新
如果当日的股票价格比之前保存的最小值高就考虑是否今日卖出
如果今日卖出的利润大于之前卖出的最大利润就更新最大利润
遍历到最后一天就得到了最大的利润
int maxProfit(vector<int>& prices) {
int len = prices.size();
int min = prices[0];//最小购入价格
int maxprofit = 0;//最大利润
//从前向后遍历
for(int i=1;i<len;i++){
//当日的股票价格比之前保存的最小值低就更新
if(prices[i]<min){
min =prices[i];
}else{
//当日的股票价格比之前保存的最小值高
//考虑是否卖出
//如果今日卖出的利润大于之前卖出的最大利润就更新最大利润
if(prices[i]-min>maxprofit){
maxprofit = prices[i]-min;
}
}
}
return maxprofit;//返回最大利润
}
解法二:
解题思路:
每天的股票有两种情况,1.持有2.未持有
某天的最大利润是由前一天持有和未持有分别的最大利润和当日的股票价格确认的
记录今日持有和未持有两种情况的最大利润
持有有两种情况,一个是持有的是之前买的股票,一个是今天新买的(-prices[i])因为只能买卖一次所以买新股票就为-prices[i]
找到这两种情况的最大值:dp[i][0] = max(dp[i-1][0],-prices[i]);
未持有有两种情况,一个是之前就没有今天也不买,一个是今天卖出
找到这两种情况的最大值:dp[i][0] = max(dp[i-1][1],dp[i-1][0]+prices[i]);
推导到最后一天,当日未持有股票的最大利润就是要结果return dp[len-1][1];
dp数组的含义:
dp[i][0]表示第i天持有股票的最大利润
有两种情况,1.继承昨天的股票2.今天现买的股票
dp[i][1]表示第i天不持有股票的最大利润
有两种情况,1.继承昨天(昨天就没买)2.今天刚卖掉
vector<vector<int>> dp(len,vector<int>(2));
dp数组初始化:
dp[0][0] = -prices[0];//第一天持有就是买了当前天的股票
dp[0][1] = 0;//第一天未持有就是没买或者当天买当天卖都是0
递推公式: dp[i][0] = max(dp[i-1][0],-prices[i]);
dp[i][1] = max(dp[i-1][1],dp[i-1][0]+prices[i]);
int maxProfit(vector<int>& prices) {
int len = prices.size();
//dp数组的含义:
//dp[i][0]表示第i天持有股票的最大利润
//有两种情况,1.继承昨天的股票2.今天现买的股票
//dp[i][1]表示第i天不持有股票的最大利润
//有两种情况,1.继承昨天(昨天就没买)2.今天刚卖掉
vector<vector<int>> dp(len,vector<int>(2));
dp[0][0] = -prices[0];//第一天持有就是买了当前天的股票
dp[0][1] = 0;//第一天未持有就是没买或者当天买当天卖都是0
for(int i=1;i<len;i++){
dp[i][0] = max(dp[i-1][0],-prices[i]);
dp[i][1] = max(dp[i-1][1],dp[i-1][0]+prices[i]);
}
return dp[len-1][1];
}