6.25 金山软件 软件测试实习

面试已经过去一个月了,由于6月底一直在准备各种面试,没有及时写文章,因此根据印象与当时的记录分享一下经验。

面试时间约的是下午15:00面试,面试时长30分钟,采用线上面试的方式,需要下载WPS会议。

面试主要流程:

1.自我介绍环节

2.面试官提问环节

3.面试者提问环节

后续的面试基本都是这种流程。

面试具体内容

自我介绍部分

自我介绍部分没什么好说的,就是介绍自己的基本信息、研究内容、项目内容,项目内容会更重点一些。

面试官提问环节

这部分大概可以概括为三个部分:首先就是针对你的项目进行提问、之后会针对你的个人技能部分进行提问、最后提问岗位相关的知识。之前背了很多的八股,但实际上并没有问到多少。

一、项目部分

如果你的简历有项目经历或是工作实习经历的话,这一定是整个简历中提问的重点。由于我在读研二,没有工作实习经验,但是有参与实验室的项目,因此简历里放了两个项目经历。我后面的所有面试全都对这一块进行了提问,而且全都是只问了时间最近的一个项目,因此要把你最有把握的项目放在前面,哪怕不是最近的项目也可以写的时间近一些。

具体提问内容就是展开说一下项目的大概流程,这个项目干了什么,你在这个项目里担任了什么角色(重点)。之后就是根据我的描述进行交流,比如问了一下其中的某个模块如何实现,某个进程的作用等。

二、个人技能部分

这部分就针对简历的技能进行提问,python、mysql、lin

### 解决 PP-OCRv4 出现的错误 当遇到 `WARNING: The pretrained params backbone.blocks2.0.dw_conv.lab.scale not in model` 这样的警告时,这通常意味着预训练模型中的某些参数未能匹配到当前配置下的模型结构中[^2]。 对于此问题的一个有效解决方案是采用特定配置文件来适配预训练权重。具体操作方法如下: 通过指定配置文件 `ch_PP-OCRv4_det_student.yml` 并利用已有的最佳精度预训练模型 (`best_accuracy`) 来启动训练过程可以绕过上述不兼容的问题。执行命令如下所示: ```bash python3 tools/train.py -c configs/det/ch_PP-OCRv4/ch_PP-OCRv4_det_student.yml ``` 该方案不仅解决了参数缺失带来的警告,还能够继续基于高质量的预训练成果进行微调,从而提升最终检测效果。 关于蒸馏的概念,在机器学习领域内指的是将大型复杂网络(teacher 模型)的知识迁移到小型简单网络(student 模型)。这里 student 和 teacher 的关系是指两个不同规模或架构的神经网络之间的指导与被指导的关系;其中 teacher 已经经过充分训练并具有良好的性能,而 student 则试图模仿前者的行为模式以达到相似的效果但保持更高效的计算特性。 至于提到的 `Traceback` 错误信息部分,由于未提供具体的跟踪堆栈详情,难以给出针对性建议。不过一般而言,这类报错往往涉及代码逻辑错误或是环境配置不当等问题。为了更好地帮助定位和解决问题,推荐记录完整的异常日志,并仔细检查最近修改过的代码片段以及确认依赖库版本的一致性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值