Leetcode力扣300 最长递增子序列

题目链接https://leetcode.cn/problems/longest-increasing-subsequence/description

暴力搜索解法(会超时)

//最简单最直接的暴力搜索思想 会超时
class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int max2 = 1;
        for (int i = 0; i < nums.size(); i++)
        {
            max2 = max(max2, Max(nums, i));
        }
        return max2;
    }
    int Max(vector<int>& nums, int m)
    {
        int max1 = 1;
        if (m == nums.size() - 1)
            return 1;
        for (int j = m + 1; j < nums.size(); j++)
        {
            if (nums[j] > nums[m])
            {
                max1 = max(max1, Max(nums, j) + 1);
            }
        }
        return max1;
    }
};

剪枝Pruning 以空间换时间

//Pruning剪枝改进一下 增加一个数组记录避免重复节点的计算 记忆化搜索 以空间换时间 
class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int max2 = 1;
        for (int i = 0; i < nums.size(); i++)
        {
            max2 = max(max2, Max(nums, i));
        }
        return max2;
    }
    int num[2500] = { 0 };
    int Max(vector<int>& nums, int m)
    {
        if (num[m] != 0)
            return num[m];
        int max1 = 1;
        if (m == nums.size() - 1)
            return 1;
        for (int j = m + 1; j < nums.size(); j++)
        {
            if (nums[j] > nums[m])
            {
                max1 = max(max1, Max(nums, j) + 1);
            }
        }
        num[m] = max1;
        return max1;
    }
};

动态规划方法

//动态规划dp解法
class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int max1 = 1;
        Max_length(nums);
        for (int i = 0; i < nums.size(); i++)
        {
            //cout<<dp[i]<<endl;
            max1 = max(max1, dp[i]);
        }
        return max1;
    }
    int dp[2500] = { 0 };//首先进行dp数组的初始化
   
    void Max_length(vector<int>& nums)
    { for(int i = 0; i < 2500; i++) dp[i] = 1;
        for (int i = nums.size() - 1; i >= 0; i--)
        {
            for (int j = i; j < nums.size(); j++)
            {
                if (nums[j] > nums[i])
                {
                    dp[i] = max(dp[i], dp[j] + 1);
                }
            }
        }

    }
};

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值