【数字信号处理】第三章 离散傅里叶变换DFT及FFT快速算法


前言

这里其实是整个数字信号处理最难的部分了, 大多数同学在这里栽跟头, 主要还是新概念.
在高中的时候面对新概念, 也烦, 但不至于到怕.
为什么现在怕了? 主要还是时间不够, 太快了. 这不, 半个学期过去马上就要迎来考试, 匆匆忙忙写下这篇, 希望能给自己和大家带来帮助.

记住, 考试只是辅助监督, 知识有没有学到是你自己的.


1 DFT定义和物理意义

在这里插入图片描述

N为采样点数, 也称为DFT的区间长度, 要求N≥序列长度

在这里插入图片描述

1.1 DFT \ ZT \ DTFT之间的关系

在这里插入图片描述
在这里插入图片描述
结论:

  1. 序列x(n)的傅里叶变换X(ejw)是序列的Z变换X(z)在单位圆上的取值。
  2. 序列x(n)的N点DFT变换X(k)是序列傅里叶变换X(ejw)在频率区间[0,2pi]上的N点等间隔采样,采样间隔为
    2pi /N。
  3. 序列的N点DFT变换X(k)是序列的Z变换X()在单位圆上的N点等间隔采样,频率采样间隔为2pi /N
    在这里插入图片描述
    这道立体里,
    求和长度n和采样点数N一样的时候, k!=0时等于0! 对称相减了!
    等比数列求和公式

2 DFT性质

  1. 线性性质

  2. 隐含周期性: X(k)采样点数N为周期 X ( k ) = X ( k + m N ) 和 x ( n ) = x ( n + m N ) X(k)=X(k+mN)和x(n)=x(n+mN) X(k)=X(k+mN)x(n)=x(n+mN)

  3. 循环移位性质: y ( n ) = x ( ( n + m ) ) N ⋅ R N ( n ) y(n)=x((n+m))_N\cdot R_N(n) y(n)=x((n+m))NRN(n)
    具体顺序为, 先以N为周期延拓, 然后移位m个单位, 取0~N-1为主值

  4. 时域的循环移位性质: 假如 y ( n ) = x ( ( n + m ) ) N ⋅ R N ( n ) y(n)=x((n+m))_N\cdot R_N(n) y(n)=x((n+m))NRN(n)
    Y ( k ) = X ( k ) W N − k m Y(k)=X(k)W^{-km}_N Y(k)=X(k)WNkm

  5. 频域的循环移位性质: 假如 Y ( k ) = X ( ( k + l ) ) N R N ( k ) Y(k)=X((k+l))_NR_N(k) Y(k)=X((k+l))NRN(k)
    y ( n ) = x ( n ) W N n l y(n)=x(n)W^{nl}_N y(n)=x(n)WNnl

  6. 复共轭序列 x ∗ ( n ) 的 D F T 为 X ∗ ( N − k ) 和 x ∗ ( N − n ) 的 D F T 为 X ∗ ( k ) x^*(n)的DFT为X^*(N-k) 和x^*(N-n)的DFT为X^*(k) x(n)DFTX(Nk)x(Nn)DFTX(k)
    N为序列的长度

  7. 圆周共轭对称序列 x e p ( n ) x_{e p}(n) xep(n) 满足
    x e p ( n ) = x e p ∗ ( N − n ) , 0 ≤ n ≤ N − 1 x_{e p}(n)=x_{e p}^*(N-n), \quad 0 \leq n \leq N-1 xep(n)=xep(Nn),0nN1
    圆周共轭反对称序列 x o p ( n ) x_{o p}(n) xop(n) 满足
    x o p ( n ) = − x o p ∗ ( N − n ) , 0 ≤ n ≤ N − 1 x_{o p}(n)=-x_{o p}^*(N-n), \quad 0 \leq n \leq N-1 xop(n)=xop(Nn),0nN1
    任意有限长离散时间序列 x ( n ) x(n) x(n) 可以分解成
    x ( n ) = x e p ( n ) + x o p ( n ) 0 ≤ n ≤ N − 1 { x e p ( n ) = x ( n ) + x ∗ (   N − n ) 2 x o p ( n ) = x ( n ) − x ∗ (   N − n ) 2 \begin{aligned} & x(n)=x_{e p}(n)+x_{o p}(n) \quad 0 \leq n \leq N-1 \\ & \left\{\begin{array}{l} x_{e p}(n)=\frac{x(n)+x^*(\mathrm{~N}-n)}{2} \\ x_{o p}(n)=\frac{x(n)-x^*(\mathrm{~N}-n)}{2} \end{array}\right. \end{aligned} x(n)=xep(n)+xop(n)0nN1{xep(n)=2x(n)+x( Nn)xop(n)=2x(n)x( Nn)
    在这里插入图片描述

  8. 实数序列的对称性

  9. 循环卷积定理:相当于线性卷积的基础上的移位+取主值
    在这里插入图片描述

在这里插入图片描述

在这里插入图片描述


3 频率采样

在分析DFT和ZT关系的时候说道, DFT为在Z平面上单位圆等间隔采样

在这里插入图片描述

对DFT反变换得到的 x N ( n ) x_N(n) xN(n)和原来的 x ( n ) x(n) x(n)有什么关系?
在这里插入图片描述

经过推导, 我们可以得到以下结论

x N ( n ) x_N(n) xN(n)为--------原来的 x ( n ) x(n) x(n)以N为周期的周期延拓序列的主值序列
主值范围即0~N-1


4 DFT的快速算法—FFT

主要是掌握时域-基2的FFT算法和计算DFT和FFT的运算复杂度

  • 直接计算DFT的复杂度= N 2 复数乘法 + N ( N − 1 ) 复数加法 N^2复数乘法+N(N-1)复数加法 N2复数乘法+N(N1)复数加法
  • FFT的复杂度 N 2 l o g 2 N 复数乘法 + N l o g 2 N 复数加法 \frac{N}{2}log_2{N}复数乘法+Nlog_2{N}复数加法 2Nlog2N复数乘法+Nlog2N复数加法
    在这里插入图片描述在这里插入图片描述
    在这里插入图片描述

在这里插入图片描述


5 DFT应用举例

主要是计算离散线性卷积

在这里插入图片描述

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PINK_SHEEP

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值