【数字信号处理】第八章 时域离散系统的实现(滤波器网格图)


前言

这已经是最后一章了, 写这篇的时候数字信号处理已经讲完, 自己很多前面的坑都还没填上. 忙啊, 都忙, 忙点好啊.
其实也不是说天天都在干活, 懒惰劲上来了就是什么都不想干, 更别说这种费脑子的事. 可恶可恶, 不做就会慢慢堆积在一起, 一旦堆的够多—
摆烂心理就会萌生!!!就会开始说服自己摆烂, 最后======放弃做这件事…
不知道是不是大多数人的真相了…

这一章还是很简单的, 数字信号处理除了刚开始有点难度, 到了后头其实都还简单, 不像隔壁的微机!!(〃>皿<)


系统描述引言

描述系统, 当然不是用文字去描述啦.

前面在一二章我们学到了差分方程\ 单位脉冲响应\ 和系统函数进行描述

一个系统函数可以通用的表示为

H ( z ) = ∑ r = 0 M b ( r ) z − r 1 + ∑ k = 1 N a ( k ) z − k H(z)= \frac{\sum^M_{r=0}b(r)z^{-r}}{1+\sum^N_{k=1}a(k)z^{-k}} H(z)=1+k=1Na(k)zkr=0Mb(r)zr

在数字信号处理中有三种基本算法, 那就是加法\ 乘法\ 单位延迟

在<信号与系统>中我们学习到系统框图的画法, 那么这里要学习的就是流图
很相似, 所以我说很简单

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
让我们举个例子很好就可以理解

在这里插入图片描述
求该流图的系统函数

知道三点就可以

  1. 第一个方程是起点x(n)处的节点方程
  2. 第二个方程式终点y(n)处的节点方程
  3. 除此之外用延时n-1补充方程

PS: 最后求系统函数就z变换一下, 注意延时-1为乘 z − 1 z^{-1} z1

最后提一嘴, 上两章对FIR和IIR滤波器提到为什么单位脉冲响应是有限长和无限长, 取决于是否存在输出对输入的反馈.

体现在流图里就很简单啦, 那就是有没有输出节点对输入节点的反馈
这里的输入输出指的是当前和上一个, 并非单指起点和终点


IIR网格结构

输出节点对输入节点有反馈回路

直接型

一个例子就知道了, 就是直接通过系数画
在这里插入图片描述

在这里插入图片描述

记住两点就行:

  1. 左边为y的反馈回路, 右边为x的反馈回路, 从上到下按n, n-1, n-2...顺序
  2. 记住回路方向, 其实很好记, 左边是y的,输出对输入的反馈, 肯定要倒回去的方向; 右边是x的, 反过来就行了
    在这里插入图片描述

优点: 直接通过差分方程或者系统函数画出, 简单直观
缺点: 系数没有反应零极点分布, 调试不方便

级联型

级联型其实就是把多个直接型连接在一起

原来的 H ( z ) = ∑ r = 0 M b ( r ) z − r 1 + ∑ k = 1 N a ( k ) z − k H(z)= \frac{\sum^M_{r=0}b(r)z^{-r}}{1+\sum^N_{k=1}a(k)z^{-k}} H(z)=1+k=1Na(k)zkr=0Mb(r)zr进行因式分解

就得到 H ( z ) = A ∏ r = 1 M ( 1 − C r z − 1 ) ∏ k = 1 N ( 1 − d k z − 1 ) H(z)=A \frac{\prod^M_{r=1}(1-C_rz^{-1})}{\prod^N_{k=1}(1-d_kz^{-1})} H(z)=Ak=1N(1dkz1)r=1M(1Crz1)
A为常数, C r C_r Cr为零点, d k d_k dk为极点

将上式分解为多个系统函数级联 H ( z ) = H 1 ( z ) H 2 ( z ) . . . H(z)=H_1(z)H_2(z)... H(z)=H1(z)H2(z)...

每个系统函数 H i ( z ) H_i(z) Hi(z)都由直接型网格结构表示

同样举个例子就很好理解
在这里插入图片描述

同样只要记住两点就够

  1. 把系统函数因式分解
  2. 把分解出来的系统函数按直接型画出, 再级联即可

在这里插入图片描述

并联型

级联是"小系统函数"相乘, 并联就是"小系统函数"相加
只是方法不同了而已, 级联型是因式分解, 并联型是部分分式展开法

举个例子理解吧
在这里插入图片描述
在这里插入图片描述
类比级联型是前后连接, 这里并联型是上下连接, 其实就和信号与系统里面的系统框图一样的, 只不过这列流图更加简洁

我觉得还是只要记住两点就行

  1. 系统函数部分分式展开为一阶二阶网络
  2. 每个网络按直接型画出, 最后上下并联即可

在这里插入图片描述


FIR网格结构

FIR的单位脉冲响应是有限的
那系统函数也不同于IIR了

H ( z ) = ∑ n = 0 N − 1 h ( n ) z − n H(z)=\sum_{n=0}^{N-1}h(n)z^{-n} H(z)=n=0N1h(n)zn

直接型

也没啥好说的了, 就是x(n)延时再相加呗

在这里插入图片描述

级联型

当要控制滤波器的零点时候, 就可以把H(z)因式分解为多个一阶二阶多项式相乘

H ( z ) = H 1 ( z ) H 2 ( z ) . . . H k ( z ) H(z)=H_1(z)H_2(z)...H_k(z) H(z)=H1(z)H2(z)...Hk(z)

H k ( z ) = β 0 k + β 1 k z − 1 + β 2 k z − 2 + . . . H_k(z)=\beta_{0k}+\beta_{1k}z^{-1}+\beta_{2k}z^{-2}+... Hk(z)=β0k+β1kz1+β2kz2+...

例子更加简单啦
在这里插入图片描述

注意两件事

  1. 方向只有x出发的
  2. 级联型就是因式分解

线性相位结构(上一章的线性相位FIR滤波器哦)

还记着上一章的线性相位FIR滤波器设计中提到两类线性相位吗?
对啦分别是
第一类 θ = − k ω \theta=-k\omega θ=
和第二类 θ = − k ω + β \theta=-k\omega+\beta θ=+β
那他们的条件还记得吧, 第一类是单位脉冲响应移位N-1偶对称
第二类是左移位N-1奇对称呢

在这里插入图片描述
在这里插入图片描述

这里要注意的还是两个点

  1. 第二类由于是奇对称, 反馈回路要多乘一个-1
  2. N为偶数由于是h(0)开始, 要记住多一个反馈回路

频率采样结构

首先我们要知道频率采样定理是啥子东西
在这里插入图片描述
![在这里插入图片描述](https://img-blog.csdnimg.cn/1b1d6616643d42ecb24cd09656ef72ce.png =500x)

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PINK_SHEEP

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值