1054 The Dominant Color
统计哪个颜色最多 直接计数
#include <bits/stdc++.h>
using namespace std;
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr), cout.tie(nullptr);
map<int, int> mp;
int n, m; cin >> n >> m;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
int t; cin >> t;
mp[t]++;
}
}
int c, cnt = -1;
for (const auto& [a, b] : mp) {
if (b > cnt) {
cnt = b;
c = a;
}
}
cout << c << '\n';
return 0;
}
1055 The World’s Richest
转化为多路归并
问题转化为:一段年龄段内的前K大的人
关键点是年龄范围是 [ 1 , 200 ] [1, 200] [1,200],以及K非常小。
可以把人按升序一个个插入到对应的年龄所在的桶,那么最终会得到200个桶(由桶顶向下递减)。
可以这样想:假如此次查询的年龄区间是 [ 10 , 20 ] [10, 20] [10,20],那最大的,一定是 [ 10 , 20 ] [10, 20] [10,20]这11个桶的某个桶顶部最大,然后从顶部删掉,往复直至选够K个,其实就是归并排序(只不过归并排序是2个桶)。
所以 M M M次查询时间复杂度 O ( M K ⋅ 200 ) O(MK \cdot 200) O(MK⋅200),再加上预处理桶排序的时间 O ( N log N ) O(N\log{N}) O(NlogN)。
易错的地方是 先按钱 再按年龄 再按名字…
#include <bits/stdc++.h>
using namespace std;
struct Person {
int age, money;
string name;
explicit Person(int _a, int _m, const string& _n): age(_a), money(_m), name(_n)
{}
};
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr), cout.tie(nullptr);
int n, m; cin >> n >> m;
vector<Person> v;
for (int i = 0; i < n; i++) {
string name; int age, money; cin >> name >> age >> money;
v.emplace_back(age, money, name);
}
sort(v.begin(), v.end(), [&](const Person& lhs, const Person& rhs) -> bool {
if (lhs.money == rhs.money) {
if (lhs.age == rhs.age) return lhs.name > rhs.name;
return lhs.age > rhs.age;
}
return lhs.money < rhs.money;
});
vector<vector<Person>> bucket(210);
for (const auto& p : v) {
bucket[p.age].push_back(p);
}
for (int _ = 1; _ <= m; _++) {
cout << "Case #" << _ << ":\n";
int cnt, mi, mx; cin >> cnt >> mi >> mx;
if (mi > mx) swap(mi, mx);
if (cnt == 0) {
cout << "None\n";
continue;
}
vector<int> idx(210);
for (int i = mi; i <= mx; i++) {
idx[i] = bucket[i].size();
}
int sum = 0;
for (;;) {
int money = INT_MIN, id = INT_MAX;
string name = "";
// 多路归并
for (int i = mx; i >= mi; i--) {
if (idx[i] == 0) continue;
const auto& p = bucket[i][idx[i] - 1];
if (p.money > money) {
money = p.money;
name = p.name;
id = i;
continue;
}
if (p.money == money) {
name = p.name;
id = i;
continue;
}
}
if (id == INT_MAX) break;
idx[id]--;
cout << name << ' ' << id << ' ' << money << '\n';
if (++sum == cnt) break;
}
if (sum == 0) {
cout << "None\n";
}
}
return 0;
}
1056 Mice and Rice
题目很难读懂 只要解释一下样例就懂了
初始分组[6 0 8] [7 10 5] [9 1 4] [2 3] 第一轮进行完 只剩4个人了,第二轮3人+1人两组,第三轮就剩俩人了,再进行一轮就够了。
用两个队列模拟,统计每轮的淘汰者,然后再倒着编号就行了
#include <bits/stdc++.h>
using namespace std;
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr), cout.tie(nullptr);
int n, sz; cin >> n >> sz;
vector<int> weight(n);
queue<int> q[2];
for (int i = 0; i < n; i++) cin >> weight[i];
for (int i = 0; i < n; i++) {
int x; cin >> x;
q[0].push(x);
}
vector<vector<int>> res(1010);
int turn = 0, idx = 0;
while (true) {
int mx = -1, id = -1;
vector<int> loser;
while (!q[turn].empty()) {
auto x = q[turn].front();
q[turn].pop();
if (weight[x] > mx) {
mx = weight[x];
id = x;
}
loser.push_back(x);
// 小组已满
if (loser.size() == sz || q[turn].empty()) {
// 已经出局
for (int y : loser) {
if (y != id) res[idx].push_back(y);
}
// 进入下一局
q[turn ^ 1].push(id);
loser.clear();
mx = id = -1;
}
}
++idx;
turn ^= 1;
if (q[turn].size() + q[turn ^ 1].size() == 1) break;
}
int winner = q[0].empty() ? q[1].front() : q[0].front();
int rk = 1;
vector<int> rank(n);
rank[winner] = rk++;
for (int i = idx - 1; i >= 0; i--) {
for (int x : res[i]) {
rank[x] = rk;
}
rk += res[i].size();
}
cout << rank[0];
for (int i = 1; i < n; i++) cout << ' ' << rank[i];
cout << '\n';
return 0;
}
1057 Stack
题目可能会读错 PeekMedian是中位数 不是中间位置的数…
树状数组可以统计比x小的数有几个,很显然随着x的增加,比x小的数是越来越多的,我们只要找第一个 ≥ \ge ≥ target的数就可以了,是一个左边界二分。
U = 1 0 5 U = 10^5 U=105
时间复杂度 O ( N ⋅ log U ⋅ log U ) O(N\cdot \log{U} \cdot \log{U} ) O(N⋅logU⋅logU)
#include <bits/stdc++.h>
using namespace std;
static constexpr int N = 1e5 + 10;
template<typename T>
class Fenwick {
public:
explicit Fenwick(int _n): n(_n) {
tree.resize(n + 10);
}
/**
* @param index 注意 原数组下标从1~n
*/
void add(int index, T value) {
assert(index >= 1 && index <= n + 1);
for (int i = index; i <= n; i += low_bit(i)) {
tree[i] += value;
}
}
/**
* @return 求 原数组下标范围 [1, index] 的区间和
*/
T sum(int index) {
assert(index >= 0 && index <= n);
T res = 0;
for (int i = index; i; i -= low_bit(i)) {
res += tree[i];
}
return res;
}
private:
static inline int low_bit(int x) {
return x & -x;
}
vector<T> tree;
int n;
};
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr), cout.tie(nullptr);
int m; cin >> m;
stack<int> stk;
Fenwick<int> fenwick(N);
while (m--) {
string op; cin >> op;
if (op == "Pop") {
if (stk.empty()) cout << "Invalid\n";
else {
fenwick.add(stk.top(), -1);
cout << stk.top() << '\n';
stk.pop();
}
} else if (op == "Push") {
int x; cin >> x;
fenwick.add(x, 1);
stk.push(x);
} else {
auto sz = stk.size();
if (sz == 0) {
cout << "Invalid\n";
continue;
}
int target = (sz & 1) ? (sz / 2 + 1) : (sz / 2);
// 左边界二分
int l = 1, r = N;
while (l < r) {
int mid = l + r >> 1;
if (fenwick.sum(mid) >= target) r = mid;
else l = mid + 1;
}
cout << r << '\n';
}
}
return 0;
}