阐述矩阵初等变换方法在线性代数中的应用

阐述矩阵初等变换方法在线性代数中的应用。

解:(1)矩阵初等变换的定义:

矩阵的初等变换包括矩阵的初等行变化与初等列变换。矩阵的初等行(列)变换:(1)对调矩阵的两行(列);(2)矩阵的某行(列)所有元素乘以非零常数k;(3)矩阵某行(列)所有元素的k倍(k为非零常数)加到另一行(列)。

例:对矩阵

进行三种初等变换(任选3种不同的初等变换,行列变换均可)。

解:

.

(2)矩阵初等变换与初等矩阵的关系:

1.由单位矩阵E经过一次初等变换得到的矩阵称为初等矩阵。

2. 对一个矩阵

作一次初等行变换,就相当于用相应的同种m阶初等矩阵左乘A;

对一个矩阵

作一次初等列变换,就相当于用相应的同种n阶初等矩阵右乘A。

例:通过初等行变换将矩阵

转化为矩阵

,需要在矩阵A的左侧依次乘以哪些初等矩阵?

解:对矩阵A进行初等变换的过程:

对矩阵A左乘初等矩阵的过程:

综上可知,在矩阵A的左侧依次乘以

即可将矩阵A转化为矩阵

(3)初阵初等变换方法在方程组求解中的应用:

若Ax=b为n元线性方程组,且

为其增广矩阵,则

1.线性方程组无解的充分必要条件是

2.线性方程组有唯一解的充分必要条件是

3.线性方程组有无穷多个解的充分必要条件是

.

求解任意给定n元线性方程组步骤如下:

步骤1:写出增广矩阵

,并用初等变换将其化为行阶梯形矩阵,若

,则方程组无解;

步骤2:若

,用初等行变换将上一步得到的行阶梯矩阵进一步化为行最简形矩阵,所谓行最简形矩阵满足以下条件:首先是行阶梯形矩阵,其次各行首非零元素为1,最后各行首非零元的同列元素均为0;

步骤3:写出行最简形矩阵对应的同解方程组;

步骤4:若

,则方程组有唯一解,对于齐次线性方程组,唯一解即为零解。若

,写出含n-r个参数的通解。

线性方程组解的情况:

齐次线性方程组指的是常数项全部为零的线性方程组。齐次线性方程组一定有解,至少有零解。方程组的解有以下两种类型:

1、如果R(A)<n,则则齐次线性方程组有非零解。

例:求解线性方程组

解:对增广矩阵B作若干次初等行变换,得

从而可得同解方程组为

,选取

为自由未知数,有

,令

,得方程组的无穷多个解为

其中

为任意实数,即

2、如果R(A)=n,则齐次线性方程组只有零解。

例:求解线性方程组

解:

R(A)=3,方程组只有零解。

对于一个含有n个未知数m个方程的非齐次线性方程组而言,解有三种情况,有唯一解、无解、有无穷多解:

1.当方程组的系数矩阵的秩与方程组增广矩阵的秩相等且均等于方程组中未知数个数n的时候,方程组有唯一解。

例:求解线性方程组

解:对增广矩阵B作若干次初等行变换,得

因为

所以方程组有唯一解

2.当方程组的系数矩阵的秩与方程组增广矩阵的秩相等且均小于方程组中未知数个数n的时候,方程组有无穷多解。

例:求解线性方程组

解:

因为

,所以方程组有无穷多个解,且对应的同解方程组为

选取

为自由未知数,并令

=c,因此方程组的解为

3.当方程组的系数矩阵的秩小于方程组增广矩阵的秩的时候,方程组无解。

例:求解线性方程组

解:

所以原方程组无解。

例:求解线性方程组

解:对增广矩阵B作若干次初等行变换,得

因为

所以原方程组无解。

(4)矩阵初等变换方法在求向量组的秩及线性相关性等方面的应用:

1.向量组

的极大无关组所含向量的个数,记为

称为向量组的秩。

例:求向量组

的秩,并求该向量组的一个极大线性无关组。

解:设矩阵

,则

因为R(A)=3,所以

.由于

线性相关,所以

是原向量组的一个极大线性无关组。

2.确定向量组的线性相关性:

通过向量组构成的齐次线性方程组解的情况判断向量组的线性相关性;线性方程组有非零解向量组就线性相关,反之,线性无关。

通过向量组的秩研究向量组的相关性。若向量组的秩等于向量的个数,则该向量组是线性无关的;若向量组的秩小于向量的个数,则该向量组是线性相关的.

例:已知

讨论

的线性相关性。

解:计算以向量组成的矩阵的秩

因为R(A)=2<3,所以所给向量组是线性相关的。

3.判断一向量能否由另一向量线性表出:

以向量组

与向量

为列构成矩阵A,对矩阵A进行初等行变换,化为最简形矩阵B,观察矩阵B的最后一列能否由前面各列表出。

例:已知向量组

判断

能否由

线性表出,若能,则写出相关线性组合。

解:以

为列构成矩阵,并进行初等变换,化为最简形矩阵

所以

能由

线性表出,

=

.

(5)初等变换方法在逆矩阵求解中的应用:

1.首先作

的分块矩阵

,然后对其进行初等变换,求得逆矩阵

例:设

,求

.

解:

,所以A的逆矩阵

.

2.利用矩阵的初等变换可以判断一个矩阵是否可逆,若分块矩阵

进行初等变换,原来A的位置不能变换为单位阵E,则A不可逆。

例:设

,求

.

解:

上面分块矩阵的第一块第二行全为0,它不可能化为单位阵。所以A不可逆。

3.利用矩阵初等变换解矩阵方程。

例:设

,若AX=B,求X。

解:

(6)矩阵初等变换方法在矩阵的秩求解中的应用:

初等变换不改变矩阵的秩,求一个矩阵的秩,只需用初等行变换把矩阵化为行阶梯形矩阵,则其非零行的个数便是矩阵的秩;或者用初等列变换把矩阵化为列阶梯形矩阵,则其非零列的个数便是矩阵的秩。

例:求矩阵

的秩。

解:因为

初等变换后的矩阵的三阶子式

故原矩阵的秩R(A)=3.

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值