和为S的连续正数序列
每天一道算法题
问题:小明很喜欢数学,有一天他在做数学作业时,要求计算出9~16的和,他马上就写出了正确答案是100。但是他并不满足于此,他在想究竟有多少种连续的正数序列的和为100(至少包括两个数)。没多久,他就得到另一组连续正数和为100的序列:18,19,20,21,22。现在把问题交给你,你能不能也很快的找出所有和为S的连续正数序列?
主要有两种写法
1、枚举法
2、滑动窗口法
/*
* 问题:输出所有和为 S 的连续正数序列:
* 小明很喜欢数学,有一天他在做数学作业时,要求计算出9~16的和,他马上就写出了正确答案是100。
* 但是他并不满足于此,他在想究竟有多少种连续的正数序列的和为100(至少包括两个数)。
* 没多久,他就得到另一组连续正数和为100的序列:18,19,20,21,22。
* 现在把问题交给你,你能不能也很快的找出<*所有*>和为S的连续正数序列?
*/
public class Exer2 {
public static void main(String[] args) {
int sum = 9;
Solution2 solution2 = new Solution2();
System.out.println(solution2.FindContinuousSequence_1(sum));
System.out.println(solution2.FindContinuousSequence_2(sum));
}
}
class Solution2{
/*
* 方法一:枚举法,
* 就相当于把所有的情况都考虑进来,挺容易想到的
* step 1:从1到目标值一半向下取整作为枚举的左区间,即每次序列开始的位置。
* step 2:从每个区间首部开始,依次往后累加,如果大于目标值说明这一串序列找不到,换下一个起点。
* step 3:如果加到某个数字刚好等于目标值,则记录从区间首到区间尾的数字。
*/
public ArrayList<ArrayList<Integer>> FindContinuousSequence_1(int sum){
ArrayList<ArrayList<Integer>> list = new ArrayList<>();
// int max = sum % 2 == 0 ? sum / 2 : sum /2 + 1; //我竟然开始这么写用三元运算符,傻傻的自作聪明
int max = (sum + 1) / 2;
int count = 0;
for(int i = 1; i < max; i++) {//从最左边往后一次累加,到sum的一半就可以停止了
// int count = 0;//这个可以定义在外面,否则每次都会定义,就是注意要让count每次循环后恢复初值0
for(int j = i; /* j <= max 可以但是没必要*/; j++) {
int begin = i;
int end = j;
count += j;
if(count > sum) {//大于sum没找到跳出循环
count = 0;//让count恢复初始值0
break;
}
if(count == sum) {//等于即找到
count = 0;
//这里我用的ArrayList的另一种初始化方法,我觉得挺好用的,
//但是这里面用不了i、j,我就在前面定义了begin和end
list.add(new ArrayList<>() {{
for(int k = begin; k <= end; k++) {
add(k);
}
}});
break;
}
}
}
return list;
}
/*
* 方法二:滑动窗口法
* 滑动窗口这个思路在挺多的算法题中都有体现,大多性能都更好
* step 1:从区间[1,2]开始找连续子序列。
* step 2:每次用公式计算区间内的和,若是等于目标数,则记录下该区间的所有数字,为一种序列,
* 同时左区间指针向右,因为以左区间为开始起点的序列没有了
* step 3:若是区间内的序列和小于目标数,只能右区间扩展,若是区间内的序列和大于目标数,只能左区间收缩。
*/
public ArrayList<ArrayList<Integer>> FindContinuousSequence_2(int sum){
ArrayList<ArrayList<Integer>> list = new ArrayList<>();
int p1 = 1;
int p2 = 2;
while(p1 < p2) {
// int count = (p1 + p2) / 2 * (p2 - p1 + 1);
// 这里我开始写的是这个,直接崩溃,一直得不到想要的结果,而且找不出错误。后来把这段代码去验算才想到
int count = (p1 + p2) * (p2 - p1 + 1) / 2;
if(count == sum) {
// int start = p1;
// int end = p2;
// list.add(new ArrayList<>() {{
// for(int i = start; i <= end; i++) {
// add(i);
// }
// }});
//官方下面这样写
ArrayList<Integer> temp = new ArrayList<Integer>();
for(int i = p1; i <= p2; i++)
temp.add(i);
list.add(temp);
p1++;
}
if(count < sum) {
p2++;
}
if(count > sum){
p1++;
}
}
return list;
}
}