目录
✂️题目:
有 N件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤10000
0<vi,wi≤10000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8
🍍思路:
设f(i,j)表示前i个物品放进容量为j的背包中获取的最大值。
那么状态方程为:
f(i,j)=max{f(i−1,j),f(i−1,j−vi)+wi}
其中 vi 和 wi分别表示第i 个物品的体积和价值。
具体解释:对于第 i个物品,可以选择不放入背包中,则最大价值为 f(i-1,j);或者选择放入背包中,则最大价值为 f(i-1,j-vi)+wi。
最终的结果为 f(N,V)。
📲代码:
n, v = map(int, input().split())
# 初始化动态规划数组
dp = [[0] * (v + 1) for _ in range(n + 1)]
# 逐个考虑每个物品
for i in range(1, n + 1):
vi, wi = map(int, input().split())
# 逐个考虑每个容量
for j in range(1, v + 1):
# 如果当前物品体积大于容量,则无法选择
if vi > j:
dp[i][j] = dp[i - 1][j]
else:
# 考虑选择或不选择当前物品
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - vi] + wi)
# 输出最终结果
print(dp[n][v])
小疑问:
🐦[[0] * (v + 1) for _ in range(n + 1)] 是啥意思捏
[[0] * (v + 1) for _ in range(n + 1)]
是 Python 中创建二维数组的一种常见方式。这里使用列表推导式生成一个包含 n+1 个长度为 v+1 的列表,每个元素都是数字 0。可以看做是一个 n+1 行,v+1 列的二维数组。
具体来说,列表推导式 [0] * (v + 1)
生成了一个长度为 v+1 的列表,每个元素都是 0。然后使用列表推导式将这个列表重复 n+1 次,从而得到一个 n+1 行,v+1 列的二维数组。
🐦在[[0] * (v + 1) for _ in range(n + 1)]中,为什么是(v+1)和(n+1)呢
有 n 件物品和一个容量为 v的背包,每件物品只能使用一次。因此,我们需要用一个二维数组来记录在前 i 个物品中选择一些放入容量为 j的背包中所能获得的最大价值。
在这个二维数组中,第一维表示前 i 个物品,第二维表示容量为 j 的背包。因为需要考虑容量为 0 的背包,所以第二维需要有 v+1 个元素,即容量从 0 到 v。而第一维需要考虑前 0 个物品(即没有物品可选),所以第一维需要有 n+1 个元素,即从 0 到 n。因此,需要创建一个 n+1 行,v+1 列的二维数组,用于记录状态转移过程中的最大价值。
🐦dp[i][j] = dp[i - 1][j]是啥意思捏
如果当前物品的体积 vi 大于当前容量 j,即 vi > j,则无法选择当前物品,只能选择不放入背包中,此时最大价值与前 i-1 个物品的最大价值相同,即为 dp(i-1,j)。
因此,当 vi > j 时,dp(i,j) 取值为 dp(i-1,j),表示不选第 i 个物品,只考虑前 i-1 个物品的最大价值。