动态规划--01背包问题【python】

目录

✂️题目:

🍍思路:

📲代码:

小疑问:


✂️题目:

有 N件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 i件物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤10000
0<vi,wi≤10000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

8

🍍思路:

设f(i,j)表示前i个物品放进容量为j的背包中获取的最大值。

那么状态方程为:

                          f(i,j)=max{f(i−1,j),f(i−1,j−vi​)+wi​}

其中 vi 和 wi分别表示第i 个物品的体积和价值。

具体解释:对于第 i个物品,可以选择不放入背包中,则最大价值为 f(i-1,j);或者选择放入背包中,则最大价值为 f(i-1,j-vi)+wi。

最终的结果为 f(N,V)。

📲代码:

n, v = map(int, input().split())

# 初始化动态规划数组
dp = [[0] * (v + 1) for _ in range(n + 1)]

# 逐个考虑每个物品
for i in range(1, n + 1):
    vi, wi = map(int, input().split())
    # 逐个考虑每个容量
    for j in range(1, v + 1):
        # 如果当前物品体积大于容量,则无法选择
        if vi > j:
            dp[i][j] = dp[i - 1][j]
        else:
            # 考虑选择或不选择当前物品
            dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - vi] + wi)

# 输出最终结果
print(dp[n][v])

小疑问:

🐦[[0] * (v + 1) for _ in range(n + 1)] 是啥意思捏

[[0] * (v + 1) for _ in range(n + 1)] 是 Python 中创建二维数组的一种常见方式。这里使用列表推导式生成一个包含 n+1 个长度为 v+1 的列表,每个元素都是数字 0。可以看做是一个 n+1 行,v+1 列的二维数组。

具体来说,列表推导式 [0] * (v + 1) 生成了一个长度为 v+1 的列表,每个元素都是 0。然后使用列表推导式将这个列表重复 n+1 次,从而得到一个 n+1 行,v+1 列的二维数组。

🐦在[[0] * (v + 1) for _ in range(n + 1)]中,为什么是(v+1)和(n+1)呢

有 n 件物品和一个容量为 v的背包,每件物品只能使用一次。因此,我们需要用一个二维数组来记录在前 i 个物品中选择一些放入容量为 j的背包中所能获得的最大价值。

在这个二维数组中,第一维表示前 i 个物品,第二维表示容量为 j 的背包。因为需要考虑容量为 0 的背包,所以第二维需要有 v+1 个元素,即容量从 0 到 v。而第一维需要考虑前 0 个物品(即没有物品可选),所以第一维需要有 n+1 个元素,即从 0 到 n。因此,需要创建一个 n+1 行,v+1 列的二维数组,用于记录状态转移过程中的最大价值。

🐦dp[i][j] = dp[i - 1][j]是啥意思捏

如果当前物品的体积 vi 大于当前容量 j,即 vi > j,则无法选择当前物品,只能选择不放入背包中,此时最大价值与前 i-1 个物品的最大价值相同,即为 dp(i-1,j)。

因此,当 vi > j 时,dp(i,j) 取值为 dp(i-1,j),表示不选第 i 个物品,只考虑前 i-1 个物品的最大价值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白花前胡ovo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值