一本通 1281:最长上升子序列

【题目描述】

一个数的序列bibi,当b1<b2<...<bSb1<b2<...<bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1,a2,...,aN)(a1,a2,...,aN),我们可以得到一些上升的子序列(ai1,ai2,...,aiK)(ai1,ai2,...,aiK),这里1≤i1<i2<...<iK≤N1≤i1<i2<...<iK≤N。比如,对于序列(1,7,3,5,9,4,8),有它的一些上升子序列,如(1,7),(3,4,8)等等。这些子序列中最长的长度是4,比如子序列(1,3,5,8)。

你的任务,就是对于给定的序列,求出最长上升子序列的长度。

【输入】

输入的第一行是序列的长度N(1≤N≤1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。

【输出】

最长上升子序列的长度。

【输入样例】

7
1 7 3 5 9 4 8

【输出样例】

4
#include<stdio.h>
int max(int a, int b)
{
	if (a > b)
		return a;
	else
		return b;
}
int main()
{
	int n;
	scanf("%d", &n);
	int a[1000];
	int dp[1000];
	for (int i = 1; i <= n; i++)
	{
		scanf("%d", &a[i]);
		dp[i] = 1;
	}
	for (int i = 2; i <= n; i++)
	{
		for (int j = 1; j < i; j++)
		{
			if (a[i] > a[j])
			{
				dp[i]=max(dp[i],dp[j] + 1);
			}
		}
	}
	int num = 1;
	for (int i = 1; i <= n; i++)
	{
		if (num < dp[i])
			num = dp[i];
	}
	printf("%d", num);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值