Deekseep本地部署(含chatbox美化教程)

下述所有命令都是在 管理员下的 windowns powershell 中运行

刚刚发布没多久就看到有许多小伙伴浏览了,谢谢支持,有写的不好的地方可以提出来我来修改!

记得给我点赞赞嘻嘻!

1.安装模型运行平台(ollama)

官网地址:Ollama

1.1.ollama下载:

1.1.1.需要有魔法工具下载ollama(不用很慢)

Ollama应用百度网盘下载地址:
https://pan.baidu.com/s/1LCkbdeG3bourNj9kHdhBTQ 提取码: kong 

1.2.ollama测试:

1.2.1.ollama安装完需要测试是否安装成功(不需要主动去设置环境变量)

ollama --version
ollama -v

1.2.2.出现版本号就是安装ollama成功了

1.3.ollama使用:

只介绍几个能在部署过程中可能运用到的命令(ollama)

版本查看

ollama -v
ollama --version

模型查看

ollama list

模型运行

ollama run <模型名称>

模型删除

ollama rm <模型名称>

2.安装deekseep模型

2.1.在线安装deekseep模型

2.1.1.下载 deekseep 模型:

deekseep提供了许多中类型的模型,有大有小,具体的选择需要根据你的硬件的性能,其中1.5b模型最小,70b模型最大

# 选择其中一条命名运行就行

ollama run deepseek-r1:1.5b
ollama run deepseek-r1:7b
ollama run deepseek-r1:8b
ollama run deepseek-r1:14b
ollama run deepseek-r1:32b
ollama run deepseek-r1:70b

这是正在下载,下载完成后可以通过 ollama list 看见下载的模型,名称即为 ollama run deepseek-r1:7b 中的 deepseek-r1:7b  ,然后   ollama run deepseek-r1:7b 就可以使用该模型了

2.2.离线安装deekseep模型(在线安装可能会pull不下来)

百度网盘下载deekseep模型
 https://pan.baidu.com/s/10u3UZ-mQoTIGHxELi5QeWg 提取码: kong 

2.2.1.下载deekseep模型(我将已1.5b模型进行演示)

 两份文件都需要下载,一个导入,一个是模型本体

2.2.2.导入deekseep模型

2.2.2.1.在windowns powershell 中 cd 到下载模型文件所在目录

2.2.2.2.使用ollama导入deekseep模型

        导入模型必须存在两个文件:文件1.gguf ,文件1.modelfil

# name:自定义模型的名字 
# 必须使用 .modelfile 文件导入 .gguf文件无法导入
ollama create name -f .\deepseek-r1-1.5b.modelfile

    像我这样就是导入完成了

2.2.2.3.使用模型
ollama run name

3. chatbox美化

3.1.下载chatbox

官网下载:  Chatbox AI官网:办公学习的AI好助手,全平台AI客户端,官方免费下载

百度网盘下载:

https://pan.baidu.com/s/1ZY74lVg3Hzo-dV05PtZixQ 提取码: kong 

 3.2.安装chatbox

3.3.使用chatbox调用deekseep

3.3.1.chatbox配置deekseep

### 如何在本地环境中部署 DeepSeek 聊天机器人 #### 准备工作 为了成功部署 DeepSeek 聊天机器人到本地环境,需先完成一系列准备工作。前往 [Chatbox AI 官网](https://chatboxai.app/zh),并下载适用于当前操作系统的最新版本安装包[^1]。 #### 创建 API Key 接着,在准备使用 DeepSeek 提供的服务前,需要拥有一个有效的 API Key。这可以通过访问 DeepSeek 开放平台实现。登录后进入 API Keys 页面来创建新的密钥以便后续调用服务[^3]。 #### 部署 ChatBox 应用程序 对于希望进一步定制或离线使用的开发者来说,可以选择通过 Ollama 和 Chatbox 组合的方式来进行本地部署。这种方式允许用户构建更为强大且灵活的人工智能工具集[^2]。 #### 使用 VSCode 进行集成测试 如果打算利用 Visual Studio Code 来开发基于此机器人的项目,则可以在编辑器内安装相应的插件以简化流程。具体而言,只需搜索 "Continue" 插件并通过其界面轻松配置所需参数——即指定之前获得的那个 API 密钥以及选择合适的模型类型(如 `deepseek chat` 或者 `deepseek coder`)。这样就可以立即体验由 DeepSeek 支持的各种功能特性了。 #### 启动与验证 最后一步是启动应用程序,并确保一切正常运作。按照官方文档中的指导完成上述所有设置之后,应该能够顺利运行已部署好的聊天机器人实例。此时可尝试发起一些简单的对话请求,观察响应情况从而确认整个过程无误。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值