使用神经网络实现葡萄酒数据集的分类分析

目录

一、实验目的

二、实验环境

三、实验内容和过程


一、实验目的

  1. 掌握神经网络及深度学习建模分析
  2. 掌握使用神经网络实现分类的方法
  3. 掌握使用Keras框架实现深度学习的方法
  4. 了解各分类器之间的差异

二、实验环境

 操作系统:Windows

 应用软件:anaconda jupyter

三、实验内容和过程

关于solver:

-lbfgs:机器学习中解决函数最优化问题比较常用的手段,在牛顿法基础上提出的一种求解函数根的算法。 牛顿法与拟牛顿法学习笔记(五)L-BFGS 算法_皮果提的博客-CSDN博客_bfgs算法

-sgd:随机梯度下降,每次选择一个mini-batch,而不是全部样本,使用梯度下降来更新模型参数。它解决了随机小批量样本的问题。 

-adam: Kingma, Diederik, and Jimmy Ba提出的机遇随机梯度的优化器,基本解决了之前提到的梯度下降的一系列问题,比如随机小样本、自适应学习率、容易卡在梯度较小点等问题。  注意:默认solver ‘adam’在相对较大的数据集上效果比较好(几千个样本或者更多),对小数据集来说,lbfgs收敛更快效果也更好。 

关于activation(p121):

-identity:f(x) = x 

-logistic:其实就是sigmod,f(x) = 1 / (1 + exp(-x))

-tanh:f(x) = tanh(x)

-relu:f(x) = max(0, x) 

例题1:使用神经网络实现葡萄酒数据集的分类分析,分类值为葡萄酒质量,(1-10之间),选择不同的优化权重算法(solver)进行模型比较并分析。 (包含模型分类评估) *使用“quality”列

代码如下(示例):

#第一步 读入数据,划分训练集和测试集
import pandas as pd
import numpy as np
filename='data\wine.csv'
data=pd.read_csv(filename,index_col='idx')
data.drop('good_or_not',axis=1,inplace=True)
x = data.drop('quality', axis=1).values.astype(float)
y = data['quality'].values.astype(float)
from sklearn import model_selection#分割训练集和测试集
X_train,X_test,y_train,y_test = model_selection.train_test_split(x,y,test_size=0.5,random_state=1)#划分训练/测试集
print(X_train)

结果:

#第二步 创建神经网络分类器,训练网络节点连接权重及偏置项(此处用到lbfgs函数)
from sklearn.neural_network import MLPClassifier
mlp = MLPClassifier(solver='lbfgs',alpha=1e-5,hidden_layer_sizes=(5, 5),random_state=1)#表示有两个隐藏层,每层神经元个数分别为3、3
mlp.fit(X_train,y_train)
print(mlp.score(X_test,y_test))#mlp.score查看模型评分,返回给定测试数据和标签上的平均准确度 

结果: 

#第三步 分类器性能评估
from sklearn import metrics
y_predicted = mlp.predict(X_test)
print("Classification report for %s" % mlp)
print(metrics.classification_report(y_test, y_predicted) )
print( "Confusion matrix:\n", metrics.confusion_matrix(y_test, y_predicted) )

#重新计算,修改为sgd函数
#创建神经网络分类器,训练网络节点连接权重及偏置项
mlp = MLPClassifier(solver='sgd',alpha=1e-5,hidden_layer_sizes=(3,3),random_state=1)#表示有两个隐藏层,每层神经元个数分别为3、3
mlp.fit(X_train,y_train)
print(mlp.score(X_test,y_test))#mlp.score查看模型评分,返回给定测试数据和标签上的平均准确度 

 结果:

#分类器性能评估
y_predicted = mlp.predict(X_test)
print("Classification report for %s" % mlp)
print(metrics.classification_report(y_test, y_predicted) )
print( "Confusion matrix:\n", metrics.confusion_matrix(y_test, y_predicted) )

 Keras是一个使用Python开发的多层神经网络API,能方便地以开源深度学习库,作为后端运行。Keras具有高度模块化、简单及可扩充等特性,支持简易和快速的原型设计。
   Keras采用模型构建神经网络。序贯(Sequential)模型是简单的线性模型,由多个网络层按输出顺序线性堆叠而成,只有一个输出。函数式(Functional)模型则在序列模型的基础上,允许用户定义多输出、非循环有向或具有共享层的结构。

基于Keras训练神经网络模型可以按照以下三个步骤进行(以序贯模型为例):
•定义神经网络的结构,说明组成网络的层类型、参数;
•定义神经网络的损失函数、优化器、性能评估指标,并编译模型;
•使用数据集训练模型、预测、性能分析。 

1.Keras模型常用层 基于Keras构建神经网络一般包括以下通用层。

(1)Dense层:全连接层,其节点与下一层节点完全连接。 Dense(units,input_dim,…)

(2)Activation层:激活层,对上一层的输出施加激活函数。常见的激活函数有softmax,relu,tanh,sigmoid等。

(3)Dropout层:中断层,在训练过程中,每次更新参数时按照一定的概率,随即断开给定百分比(p)的输入神经元连接,用于防止过拟合。

2.Keras模型常用函数 Keras提供了神经网络模型编译、训练及性能评估的各类函数,使用方法如下。

(1)模型编译:model.compile(loss,optimizer,metrics,…)

(2)模型训练: model.fit(x,y,batch_size,epochs,verbose,validation_split,validation_data,…)

(3)模型评估:model.evaluate(x_test,y_test,verbose,...) 返回模型指定的loss和metrics。

(4)模型预测:model.predict(x_test,verbose,...)

例题2:基于Keras建立深度神经网络模型,采取不同的数据集划分比例(9:1,8:2,7:3),为葡萄酒数据集训练分类器并进行分析。(包含模型分类性能的评估)

*使用“good_or_not”列(此处仅展示比例为9:1的情况)

import pandas as pd
filename='data\wine.csv'
data=pd.read_csv(filename,index_col='idx')
data.loc[data['good_or_not']=='good','good_or_not']=1
data.loc[data['good_or_not']=='not','good_or_not']=0
data.drop('quality',axis=1,inplace=True)
x = data.drop('good_or_not', axis=1).values.astype(float)
y = data['good_or_not'].values.astype(float)
from keras.models import Sequential
from keras.layers import Dense, Activation
import numpy as np
from sklearn.model_selection import train_test_split
# 定义模型结构
model = Sequential()
model.add(Dense(units=16, input_dim=11))
model.add(Activation('relu'))
model.add(Dense(16))
model.add(Activation('relu'))
model.add(Dense(3))
model.add(Activation('softmax'))
#定义模型损失函数和优化器,并编译
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=["accuracy"])
#1、深度学习模型,输入输出都为多维张量,统一使用小写字母 x,y,划分比例9:1
x_train, x_test, y_train, y_test= train_test_split(x, y, train_size=0.9, test_size=0.1, random_state=0)
from keras.utils import np_utils
y_train_ohe = np_utils.to_categorical(y_train, num_classes = 3)
y_test_ohe = np_utils.to_categorical(y_test, num_classes = 3)
#2、模型的训练及评估
model.fit(x_train, y_train_ohe, epochs=20, batch_size=1, verbose=2, validation_data=(x_test,y_test_ohe))

#3、评估模型
loss, accuracy = model.evaluate(x_test, y_test_ohe,verbose=2)
print('loss = {},accuracy = {} '.format(loss,accuracy) )

#4、查看预测结果
prob = model.predict(x_test,verbose=2)
#classes = model.predict_classes(x_test,verbose=2)
classes=np.argmax(prob,axis=1)
print('测试样本数:',len(classes))
print("分类概率:\n",prob)
print("分类结果:\n",classes)
from sklearn.metrics import classification_report
print('分类性能报告如下:')
print(classification_report(list(y_test),list(classes)))

  • 29
    点赞
  • 78
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
随着我国葡萄酒业的逐步发展,葡萄酒生产企业的规模和数量不断扩大。但中国的葡萄酒业仍面临着进口酒的激烈竞争以及质量检测体系不明确带来的市场紊乱。针对这些问题,本文分析葡萄酒质量人工品尝存在的不足,并提出了如何提高基于数据挖掘技术的葡萄酒质量等级的识别率,对中国葡萄酒市场的稳定发展以及更好地酿造出高质量的葡萄酒有着实际的应用价值。在数据挖掘中,经常会遇到不平衡数据的分析。相对于多数类来说,少数类样本对准确率的影响力小,这意味着对所有样本进行分类,可以在不识别出任何少数类样本的情况下得到很高的正确率,识别少数类的分类规则也就被忽略了。本文的创新点在于从不平衡样本中提取平衡样本进行建模并对测试样本预测,进行多次的循环,得到多次的预测结果,选择次数出现最多的预测结果作为最终的预测结果,大大提高了低质量葡萄酒的识别率。本文采用BP神经网络葡萄酒种类进行模式识别,通过对在意大利同一区域里三种的葡萄酒的化学成分分析,数据含有178个样本,每个样本含有13个特征分量,每个样本的类别标签已定。其中将这178个样本的65%作为训练样本,另外35%作为测试样本,用训练样本对BP神经网络进行训练可以得到相对应的分类模型,在利用训练好的模型对测试样本进行分类识别。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值