题目
在给定的 m x n
网格 grid
中,每个单元格可以有以下三个值之一:
- 值
0
代表空单元格; - 值
1
代表新鲜橘子; - 值
2
代表腐烂的橘子。
每分钟,腐烂的橘子 周围 4 个方向上相邻 的新鲜橘子都会腐烂。
返回 直到单元格中没有新鲜橘子为止所必须经过的最小分钟数。如果不可能,返回 -1
。
示例1:
输入:grid = [[2,1,1],[1,1,0],[0,1,1]] 输出:4
示例 2:
输入:grid = [[2,1,1],[0,1,1],[1,0,1]] 输出:-1 解释:左下角的橘子(第 2 行, 第 0 列)永远不会腐烂,因为腐烂只会发生在 4 个方向上。
示例 3:
输入:grid = [[0,2]] 输出:0 解释:因为 0 分钟时已经没有新鲜橘子了,所以答案就是 0 。
思路
是一个层次遍历的问题,要求最短时间,考虑用dfs(深度优先遍历),根据不同的状态,修改腐烂后的状态
解题方法
由于我们如果直接对原图(二维数组)进行遍历,会发现还未腐烂的提前腐烂。于是我们需要对原数组进行新建和修改,对其-2,使得-2为空,-1为未腐烂,0为腐烂。建立的新表,用t来表示当前要腐烂的橘子,t为次数;用f来进行判断遍历的结束,最后再判断是否有为腐烂的橘子
代码
class Solution {
public int orangesRotting(int[][] grid) {
int m=grid.length;
int n=grid[0].length;
int ans;
int time[][]=new int[m][n];
int t=0;
for(int i=0;i<m;i++){
for(int j=0;j<n;j++){
time[i][j]=grid[i][j]-2;
}
}
while(true){
boolean f=false;
for(int i=0;i<m;i++){
for(int j=0;j<n;j++){
if(time[i][j]==t){
if(i-1>=0&&time[i-1][j]==-1){
time[i-1][j]=t+1;
f=true;
}
if(i+1<m&&time[i+1][j]==-1){
time[i+1][j]=t+1;
f=true;
}
if(j-1>=0&&time[i][j-1]==-1){
time[i][j-1]=t+1;
f=true;
}
if(j+1<n&&time[i][j+1]==-1){
time[i][j+1]=t+1;
f=true;
}
}
}
}
if(!f)
break;
t++;
}
for(int i=0;i<m;i++){
for(int j=0;j<n;j++){
if(time[i][j]==-1){
return -1;
}
}
}
return t;
}
}