GLUE(General Language Understanding Evaluation)是一个多任务基准测试,用于评估自然语言理解(NLU)系统的性能。它由一系列的语言理解任务组成,旨在衡量机器学习模型对人类语言的理解能力。
GLUE 基准包含以下几种类型的任务:
- 单句分类任务:例如判断一句话是否蕴含某些含义(CoLA: Corpus of Linguistic Acceptability)。
- 相似度和推理任务:比如评价两个句子之间的关系(如是否等价、蕴含或矛盾),这包括 STS-B (Semantic Textual Similarity Benchmark), MNLI (Multi-Genre Natural Language Inference),以及 QNLI (Question Natural Language Inference) 等。
- 问答任务:例如根据一个段落回答问题(RTE: Recognizing Textual Entailment, WNLI: Winograd NLI)。
- 共指解析任务:确定文本中不同的词语是否指的是同一个实体(WNLI: Winograd NLI)。
- 语义角色标注任务:虽然 GLUE 中没有直接的语义角色标注任务,但类似的任务对于理解句子内部结构非常重要。
GLUE 的得分为多个任务上的平均分,每个任务都有自己的评估指标。为了在 GLUE 上取得好成绩,模型需要能够处理多种类型的自然语言处理挑战。随着深度学习的发展,特别是预训练语言模型(如 BERT, RoBERTa, XLNet 等)的出现,这些模型在 GLUE 基准上的表现有了显著提升。
GLUE 为研究社区提供了一个统一的标准来比较不同模型的效果,并推动了自然语言处理技术的发展。