研0人工智能每天一个专业知识
文章平均质量分 64
珊珊而川
这个作者很懒,什么都没留下…
展开
-
在情感分类模型训练中,transformers库的作用
在情感分类模型训练中,原创 2024-11-08 10:19:47 · 208 阅读 · 0 评论 -
浅谈特征工程
特征工程是将原始数据转换为更能代表预测模型的潜在问题的特征的过程,它在机器学习和数据挖掘项目中起着至关重要的作用。原创 2024-11-06 16:40:44 · 628 阅读 · 0 评论 -
标准化和归一化
标准化通常用于数据的分布(均值和方差)需要调整的情况,适用于许多机器学习算法,特别是当数据分布不均或尺度差异较大时。归一化通常用于数据的范围(最小值和最大值)需要调整的情况,适用于神经网络等要求数据输入在一定范围内的算法。标准化和归一化不需要同时使用,通常可以根据具体的任务选择其中之一。如果数据已经经过标准化,通常不需要再进行归一化,反之亦然。原创 2024-11-06 16:30:41 · 722 阅读 · 0 评论 -
pandas和numpy介绍
pandas和numpynumpy。原创 2024-11-06 15:56:50 · 717 阅读 · 0 评论 -
什么是定性变量、定量变量
定性变量和定量变量是统计学和数据分析中的两个重要概念:原创 2024-11-06 15:24:51 · 210 阅读 · 0 评论 -
测试集和验证集区别
总结来说,验证集用于调整模型参数,而测试集用于评估模型的最终表现。原创 2024-11-05 16:01:41 · 264 阅读 · 0 评论 -
torch.from_numpy()和torch.tensor()区别
和都可以用于创建PyTorch。原创 2024-11-04 20:59:32 · 559 阅读 · 0 评论 -
pycharm保存是自动格式化
(代码风格)中进行设置。在这里,你可以针对不同的编程语言(如Python、Java等)设置缩进、空格、换行等各种代码格式相关的参数。例如,对于Python,你可以设置每行的最大字符数、缩进方式(空格或制表符)以及每个缩进的空格数等。这些设置会在自动格式化代码时生效。(优化导入)选项,这样在保存时,PyCharm会自动清理和优化导入语句,例如删除未使用的导入等。如果需要更详细地配置代码格式化的规则,可以在。原创 2024-11-01 16:24:18 · 495 阅读 · 0 评论 -
batc和mini-batch
批处理,在机器学习中,batch 是指一次处理训练数据集的方式。例如,如果有 1000 个训练样本,使用 batch 训练时,模型会同时使用这 1000 个样本进行一次参数更新。也就是说,计算损失函数(如均方误差、交叉熵等)是基于整个数据集的所有样本。原创 2024-11-01 13:06:18 · 478 阅读 · 0 评论 -
模型性能评估指标
【代码】模型性能评估指标。原创 2024-10-30 16:06:05 · 238 阅读 · 0 评论 -
测试GPU是否可用,有几张GPU
【代码】测试GPU是否可用,有几张GPU。原创 2024-10-30 11:11:36 · 377 阅读 · 0 评论 -
autodl下载hugging的数据集和模型
【代码】autodl下载hugging的数据集和模型。原创 2024-10-28 19:30:51 · 111 阅读 · 0 评论 -
python数据处理常用操作
这些操作是数据处理的基本步骤,可以根据具体情况进行调整。原创 2024-10-28 19:25:59 · 744 阅读 · 0 评论 -
gpt为什么可以依据上下文来回答问题,依据的是什么原理
上下文长度的限制是有transformer架构中的注意力机制和位置编码共同决定,模型训练的复杂度与上下文长度平方成正比,这意味着,随着上下文长度的增加,计算复杂度会急剧增加,推理时间也会随之增强ChatGPT 能够依据上下文回答问题主要基于以下原理。ChatGPT 是一种基于 Transformer 架构的大规模无监督语言模型。原创 2024-10-09 22:59:20 · 1329 阅读 · 0 评论 -
PLM预训练语言模型Pre-trained Language Model
总之,预训练语言模型是自然语言处理领域的一个重要研究方向,它为各种自然语言处理任务提供了强大的基础。随着技术的不断发展,PLM 将在更多的领域得到应用,并为人类的语言交流和信息处理带来更大的便利。学习得到的语言模型。它通过学习语言的统计规律、语法结构和语义表示,为各种自然语言处理任务提供强大的基础。预训练语言模型(Pre-trained Language Model,PLM)预训练语言模型是一种在大规模文本数据上进行。基于 Transformer 架构。gpt就是一个典型的例子。大规模数据和计算资源。原创 2024-10-09 18:33:10 · 665 阅读 · 0 评论 -
LSTM和GRU
复杂性:LSTM比GRU有更多的参数和更复杂的结构。性能:两者在不同任务上的表现可能有所不同,没有绝对的优劣之分,通常需要根据具体任务进行选择。应用:LSTM和GRU广泛应用于自然语言处理(NLP)、语音识别、时间序列分析等需要处理序列数据的领域。选择LSTM还是GRU通常取决于具体任务的需求、数据集的大小以及计算资源。在实践中,建议尝试两者并比较它们在特定任务上的表现。原创 2024-10-09 14:52:27 · 510 阅读 · 0 评论 -
L1和L2正则化的区别
惩罚方式:L1正则化对参数的绝对值惩罚,L2正则化对参数的平方惩罚。稀疏性:L1正则化会使一些权重变为零,产生稀疏性(特征选择);L2正则化不会使权重变为零,但会使权重较小。适用场景:L1正则化适合在希望筛选出少量重要特征的情况下使用;L2正则化适合在所有特征都可能有贡献的情况下使用。原创 2024-10-09 12:04:42 · 387 阅读 · 0 评论 -
精确度和召回率
精确度(Precision)和召回率(Recall)是评估分类模型性能的两个重要指标,尤其在处理不平衡数据集时非常有用。它们通常用于二分类问题,但也可以扩展到多分类问题。原创 2024-10-07 16:00:20 · 363 阅读 · 0 评论 -
梯度消失和梯度爆炸
梯度消失和梯度爆炸是深度学习中常见的两个问题,它们都与神经网络训练过程中的梯度更新有关。原创 2024-10-07 15:15:31 · 267 阅读 · 0 评论 -
Transformer模型
在人工智能领域,Transformer模型,是一种基于自注意力机制(Self-Attention)的深度学习架构,最初由论文《Attention is All You Need》提出。Transformer模型在自然语言处理(NLP)领域取得了重大突破,并且已经成为许多NLP任务的主流架构。原创 2024-10-07 15:11:01 · 355 阅读 · 0 评论