三重积分的概念,计算(先一后二(投影穿线法))

1.概念:设三元函数f(x,y,z)在可求体积的有界闭域Ω(⊂ R3)上有定义,用分法∆把Ω以任意方式化成n个小区域Ω1,Ω2,...,Ωn,设它们的体积分别为:∆V1,∆V2,...∆Vn,任取一点作和式(称为函数f(x,y,z)在Ω上的积分和)

                              

记d(∆)=max{d(Ω1),d(Ω2),...d(Ωn)}(其中d(Ωk)表示Ωk的直径,显然d(∆)越小,积分和越精确,若极限

存在,则称函数f(x,y,z)在区域Ω上可积,并且把这个极限值称为函数f(x,y,z)在Ω上的三重积分,记作:

其中:“Ω”称为积分区域,“f(x,y,z)”称为被积函数;“f(x,y,z)dV”称为被积表达式“dV”称为体积微元,直角坐标写作dxdydz;

 

2.三重积分化为累次积分的计算

方法1 .  投影引线法 (“先一后二”)

 

 

 

 

 总结

 方法2 .  截面法 (“先二后一”)  

转自应用高等数学(巢大版)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天乐!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值