1.概念:设三元函数f(x,y,z)在可求体积的有界闭域Ω(⊂ R3)上有定义,用分法∆把Ω以任意方式化成n个小区域Ω1,Ω2,...,Ωn,设它们的体积分别为:∆V1,∆V2,...∆Vn,任取一点作和式(称为函数f(x,y,z)在Ω上的积分和)
记d(∆)=max{d(Ω1),d(Ω2),...d(Ωn)}(其中d(Ωk)表示Ωk的直径,显然d(∆)越小,积分和越精确,若极限
存在,则称函数f(x,y,z)在区域Ω上可积,并且把这个极限值称为函数f(x,y,z)在Ω上的三重积分,记作:
其中:“Ω”称为积分区域,“f(x,y,z)”称为被积函数;“f(x,y,z)dV”称为被积表达式“dV”称为体积微元,直角坐标写作dxdydz;
2.三重积分化为累次积分的计算
方法1 . 投影引线法 (“先一后二”)
总结
方法2 . 截面法 (“先二后一”)
转自应用高等数学(巢大版)