项目进展:
在过去的两天里,我们成功地完成了几个关键任务,为我们小组的项目做好了准备。首先,我搭建好了项目的运行环境,确保所有必需的软件和库都已就位。然后,我们尝试运行了训练好并导出的模型,确认了其能够合理检测出SAR图像的变化。最后,我们创建了一个代码仓库,用于存储和管理项目的所有代码:仓库地址。
目前我们的项目正在前端后端同时开发中,已经初步确定了部分框架。在这个过程中,我们遇到了一些困难。首先,由于代码量较大,且没有系统学习过python,我们对Python语言还不够熟练,需要花费更多的时间来理解和修改代码。此外,由于GitHub网站的连接情况并不稳定,我们有时会遇到无法上传或下载代码的问题。最后,由于我本身对于项目也是熟悉,因此难以为每一位成员合理地划分相应的任务并明确其目标,因此我们的项目现在还很简陋。
心得体会:
尽管遇到了一些困难,但我还是收获了许多。通过完成搭建运行环境和模型试运行的任务,我进一步加强了我对Python深度神经网络的训练与使用能力。同时,我也提高了我的编程和调试技能。
同时,我也会继续学习Python语言,以便更好地理解和修改代码。同时,我也会寻找优化代码和模型的方法,以提高程序的效率和性能。对于与前端的对接问题,我会仔细研究相关的技术文档和教程,以便更加合理地规划项目开发工作,与大家一同进步。
总的来说,虽然这个项目给我带来了一些挑战,但我相信通过不断的学习和实践,我会成功地完成这个项目并取得显著的成果。