数值分析某年期末题(实质上考察 Jacobi 的松弛法)

Jacobi 松弛法

Jacobi 松弛法是一种迭代方法,用于解线性方程组。在每次迭代中,Jacobi方法将方程组中的每个变量分别表示为其他变量的线性组合,并利用这些线性组合来更新每个变量的值。松弛法是Jacobi方法的一种改进,它引入了一个松弛因子,可以加快收敛速度。


已知求解线性方程组 A x = b \boldsymbol{A x}=\boldsymbol{b} Ax=b 的迭代格式:
x i ( k + 1 ) = x i ( k ) + μ a i i ( b i − ∑ j = 1 n a i j x j ( k ) ) , i = 1 , 2 , … n x_{i}^{(k+1)}=x_{i}^{(k)}+\frac{\mu}{a_{i i}}\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}^{(k)}\right), i=1,2, \ldots n xi(k+1)=xi(k)+aiiμ(bij=1naijxj(k)),i=1,2,n
(1) 求此迭代法的迭代矩阵 M ( A = D − L − U ) \boldsymbol{M}(\boldsymbol{A}=\boldsymbol{D}-\boldsymbol{L}-\boldsymbol{U}) M(A=DLU)

(2) 当 A A A 是严格行对角占优矩阵, μ = 0.5 {\mu}={0 . 5} μ=0.5 时, 给出 ∥ M ∥ ∞ \|\boldsymbol{M}\|_{\infty} M 表达式, 并证明此时迭代格式收敛.

(1) 要求迭代矩阵 M M M ,我们首先需要明确分解系数矩阵 A \boldsymbol{A} A D − L − U \boldsymbol{D}-\boldsymbol{L}-\boldsymbol{U} DLU ,其中 D \boldsymbol{D} D A \boldsymbol{A} A 的对角部分, L \boldsymbol{L} L 是严格下三角部分 (所有上三角元素为0), U \boldsymbol{U} U 是严格上三角部分(所有下三角元素为 $ 0) $ .

将迭代格式重写为更符合矩阵运算的形式:
x ( k + 1 ) = x ( k ) + μ D − 1 ( b − A x ( k ) ) \boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\mu \boldsymbol{D}^{-1}\left(\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}^{(k)}\right) x(k+1)=x(k)+μD1(bAx(k))
展开后得到:
x ( k + 1 ) = ( I − μ D − 1 A ) x ( k ) + μ D − 1 b \boldsymbol{x}^{(k+1)}=(\boldsymbol{I}-\mu \boldsymbol{D}^{-1}\boldsymbol{A})\boldsymbol{x}^{(k)}+\mu \boldsymbol{D}^{-1}\boldsymbol{b} x(k+1)=(IμD1A)x(k)+μD1b
因此 M = I − μ D − 1 A \boldsymbol{M}=\boldsymbol{I}-\mu \boldsymbol{D}^{-1}\boldsymbol{A} M=IμD1A.

(2) 将 A = D − L − U \boldsymbol{A}=\boldsymbol{D}-\boldsymbol{L}-\boldsymbol{U} A=DLU 代入 M \boldsymbol{M} M得:
M = I − μ D − 1 ( D − L − U ) = I − μ D − 1 D + μ D − 1 ( L + U ) = I − μ I + μ D − 1 ( D − A ) = ( 1 − μ ) I + μ ( I − D − 1 A ) \begin{aligned} \boldsymbol{M}&=\boldsymbol{I}-\mu \boldsymbol{D}^{-1}(\boldsymbol{D}-\boldsymbol{L}-\boldsymbol{U}) \\ &=\boldsymbol{I}-\mu \boldsymbol{D}^{-1} \boldsymbol{D}+\mu \boldsymbol{D}^{-1}(\boldsymbol{L}+\boldsymbol{U})\\ &=I-\mu I+\mu \boldsymbol{D}^{-1}(\boldsymbol{D}-\boldsymbol{A}) \\ &=(1-\mu) \boldsymbol{I}+\mu( \boldsymbol{I}-\boldsymbol{D}^{-1}\boldsymbol{A}) \end{aligned} M=IμD1(DLU)=IμD1D+μD1(L+U)=IμI+μD1(DA)=(1μ)I+μ(ID1A)
其中矩阵
I − D − 1 A = ( 0 − a 12 a 11 ⋯ − a 1 n a 11 − a 21 a 22 0 ⋯ − a 2 n a 22 ⋮ ⋮ ⋮ − a n 1 a n n − a n 2 a n n ⋯ 0 ) \boldsymbol{I}-\boldsymbol{D}^{-1} \boldsymbol{A}=\left(\begin{array}{cccc} 0 & -\frac{a_{12}}{a_{11}} & \cdots & -\frac{a_{1 n}}{a_{11}} \\ -\frac{a_{21}}{a_{22}} & 0 & \cdots & -\frac{a_{2 n}}{a_{22}} \\ \vdots & \vdots & & \vdots \\ -\frac{a_{n 1}}{a_{n n}} & -\frac{a_{n 2}}{a_{n n}} & \cdots & 0 \end{array}\right) ID1A= 0a22a21annan1a11a120annan2a11a1na22a2n0

A \boldsymbol{A} A是严格行对角占优知
∥ I − D − 1 A ∥ ∞ = max ⁡ 1 ⩽ i ⩽ n ∑ j = 1 j ≠ i ∣ a i j ∣ ∣ a i i ∣ = max ⁡ 1 ⩽ i ⩽ n ∑ j = 1 j ≠ i n ∣ a i j ∣ ∣ a i i ∣ < 1 \left\|\boldsymbol{I}-\boldsymbol{D}^{-1} \boldsymbol{A}\right\|_{\infty}=\max _{1 \leqslant i \leqslant n} \sum_{\substack{j=1 \\ j \neq i}} \frac{\left|a_{i j}\right|}{\left|a_{i i}\right|}=\max _{1 \leqslant i \leqslant n} \frac{\sum\limits_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right|}{\left|a_{i i}\right|}<1 ID1A =1inmaxj=1j=iaiiaij=1inmaxaiij=1j=inaij<1
当$ {\mu}={0 . 5} $ 时
∥ M ∥ ∞ = ∥ 1 2 I + 1 2 ( I − D − 1 A ) ∥ ∞ \|\boldsymbol{M}\|_{\infty}=\|\frac12\boldsymbol{I} +\frac12( \boldsymbol{I}-\boldsymbol{D}^{-1}\boldsymbol{A}) \|_{\infty} M=21I+21(ID1A)
再由范数的的齐次性及三角不等式可得:
∥ M ∥ ∞ = ∥ 1 2 I + 1 2 ( I − D − 1 A ) ∥ ∞ ⩽ 1 2 ∥ I ∥ ∞ + 1 2 ∥ I − D − 1 A ∥ ∞ < 1 2 ⋅ 1 + 1 2 ⋅ 1 = 1 \|\boldsymbol{M}\|_{\infty}=\|\frac12\boldsymbol{I} +\frac12( \boldsymbol{I}-\boldsymbol{D}^{-1}\boldsymbol{A}) \|_{\infty}\leqslant \frac12 \|I\|_{\infty}+\frac12 \|\boldsymbol{I}-\boldsymbol{D}^{-1}\boldsymbol{A}\|_{\infty}<\frac 12\cdot1+\frac 12\cdot1=1 M=21I+21(ID1A)21I+21ID1A<211+211=1
此时迭代格式收敛得证.


上面的问题实质上是对Jacobi 迭代法引进迭代参数以此加快迭代速度,与Gauss-Seidel方法(SOR)类似, 相比之下Jacobi 的松弛法更加简单.

若求解 A x = b \boldsymbol{Ax=b} Ax=b的Jacobi 方法收敛,则Jacobi 松弛法收敛的充分必要条件是 ρ ( I − μ D − 1 A ) < 1 \rho(\boldsymbol{I}-\mu \boldsymbol{D}^{-1}\boldsymbol{A})<1 ρ(IμD1A)<1.
x ( k + 1 ) = ( I − μ D − 1 A ) x ( k ) + μ D − 1 b \boldsymbol{x}^{(k+1)}=(\boldsymbol{I}-\mu \boldsymbol{D}^{-1}\boldsymbol{A})\boldsymbol{x}^{(k)}+\mu \boldsymbol{D}^{-1}\boldsymbol{b} x(k+1)=(IμD1A)x(k)+μD1b
下面证明对任意 0 < μ ⩽ 1 0<\mu\leqslant1 0<μ1都有Jacobi 松弛法收敛.

证明: 令 λ j , λ j ′ ( j = 1 , ⋯   , n ) \lambda_{j}, \lambda_{j}^{'}(j=1, \cdots, n) λj,λj(j=1,,n) 分别为 I − D − 1 A I-D^{-1} A ID1A I − μ D − 1 A I-\mu D^{-1} A IμD1A 的特征值. 由
I − μ D − 1 A = μ ( I − D − 1 A ) + ( 1 − μ ) I I-\mu D^{-1} A=\mu\left(I-D^{-1} A\right)+(1-\mu) I IμD1A=μ(ID1A)+(1μ)I
可以导出
λ j ′ = μ λ j + ( 1 − μ ) . \lambda_{j}^{'}=\mu \lambda_{j}+(1-\mu) . λj=μλj+(1μ).

λ j = r j e i θ j \lambda_{j}=r_{j} \mathrm{e}^{\mathrm{i} \theta_{j}} λj=rjeiθj, 则由 Jacobi 方法收敛的假设可知 r j < 1 r_{j}<1 rj<1. 于是对 0 < μ ⩽ 1 0<\mu \leqslant 1 0<μ1
∣ λ j ′ ∣ 2 = ∣ μ r j e i θ j + 1 − μ ∣ 2 ⩽ ( 1 − μ + μ r j ) 2 < 1 , \left|\lambda_{j}^{'}\right|^{2}=\left|\mu r_{j} \mathrm{e}^{\mathrm{i} \theta_{j}}+1-\mu\right|^{2} \leqslant\left(1-\mu+\mu r_{j}\right)^{2}<1, λj 2= μrjeiθj+1μ 2(1μ+μrj)2<1,
所以 Jacobi 松弛法收敛. 证毕.


在这里插入图片描述在这里插入图片描述在这里插入图片描述

  • 27
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值