矩阵范数习题

I ∈ R n × n I \in R^{n \times n} IRn×n 为单位矩阵, A ∈ R n × n A \in R^{n \times n} ARn×n,且 ∥ A ∥ < 1 \|A\|<1 A<1, 证明: I + A I+A I+A 是非奇异的.

要证明矩阵 I + A I + A I+A 是非奇异的,等价于证明 I + A I + A I+A 没有零特征值,即证明方程 ( I + A ) x = 0 (I + A)x = 0 (I+A)x=0 仅有平凡解 x = 0 x = 0 x=0.

方法(1):

首先,观察到矩阵 A A A 满足 ∥ A ∥ < 1 \|A\| < 1 A<1.该条件意味着对于所有的向量 x x x,有 ∥ A x ∥ ≤ ∥ A ∥ ⋅ ∥ x ∥ < ∥ x ∥ \|Ax\| \leq \|A\|\cdot \|x\| < \|x\| AxAx<x.

考虑方程 ( I + A ) x = 0 (I + A)x = 0 (I+A)x=0.这意味着 x + A x = 0 x + Ax = 0 x+Ax=0,因此 A x = − x Ax = -x Ax=x.因此,我们有
∥ x ∥ = ∥ A x ∥ ≤ ∥ A ∥ ∥ x ∥ < ∥ x ∥ , \|x\| = \|Ax\| \leq \|A\| \|x\| < \|x\|, x=AxA∥∥x<x,
上式表明唯一使其成立的是 ∥ x ∥ = 0 \|x\| = 0 x=0,即 x = 0 x = 0 x=0.这说明方程 ( I + A ) x = 0 (I + A)x = 0 (I+A)x=0 仅有平凡解.

方法(2):

使用特征值的性质来证明.设 λ \lambda λ A A A 的一个特征值,对应的特征向量为 v v v,则 A v = λ v Av = \lambda v Av=λv.对于 I + A I + A I+A,我们有:
( I + A ) v = v + A v = v + λ v = ( 1 + λ ) v . (I + A)v = v + Av = v + \lambda v = (1 + \lambda) v. (I+A)v=v+Av=v+λv=(1+λ)v.
因此, 1 + λ 1 + \lambda 1+λ I + A I + A I+A 的特征值.由于 ∥ A ∥ < 1 \|A\| < 1 A<1,所有特征值 λ \lambda λ 的绝对值都小于 1 1 1,所以 1 + λ 1 + \lambda 1+λ 不可能为零(因为 ∣ λ ∣ < 1 |\lambda| < 1 λ<1 意味着 1 + λ ≠ 0 1 + \lambda \neq 0 1+λ=0).由于 I + A I + A I+A 的所有特征值都非零, I + A I + A I+A 是非奇异的.得证.

也可以采用反证法:

假设 I + A \boldsymbol{I}+\boldsymbol{A} I+A 是奇异矩阵, 则存在非零向量 x \boldsymbol{x} x, 使得 ( I + A ) x = 0 , (\boldsymbol{I}+\boldsymbol{A}) \boldsymbol{x}=\mathbf{0}, (I+A)x=0,即得 x = − A x , \boldsymbol{x}=-\boldsymbol{A x}, x=Ax,
两边取范数得 ∥ x ∥ = ∥ − A x ∥ = ∥ A x ∥ ⩽ ∥ A ∥ ∥ x ∥ . \|\boldsymbol{x}\|=\|-\boldsymbol{A} \boldsymbol{x}\| =\|\boldsymbol{A} \boldsymbol{x}\|\leqslant\|\boldsymbol{A}\|\|\boldsymbol{x}\| . x=Ax=AxA∥∥x∥. 由于 ∥ x ∥ ≠ 0 \|\boldsymbol{x}\| \neq 0 x=0, 所以
∥ A ∥ ⩾ 1 \|\boldsymbol{A}\| \geqslant 1 A1 ,与条件 ∥ A ∥ < 1 \|\boldsymbol{A}\|<1 A<1 矛盾, 因而矩阵 I + A \boldsymbol{I}+\boldsymbol{A} I+A 是非奇异的.

I ∈ R n × n I \in R^{n \times n} IRn×n 为单位矩阵, A ∈ R n × n {A} \in R^{n \times n} ARn×n,证明: 当 $ |A|<1 $ 时, $ I+A $ 可逆, 且
∥ ( I + A ) − 1 ∥ ≤ 1 1 − ∥ A ∥ . \left\|(I+A)^{-1}\right\| \leq \frac{1}{1-\|A\|} . (I+A)1 1A1.

I + A \boldsymbol{I}+\boldsymbol{A} I+A 可逆上一题已经证得)

由于 I + A \boldsymbol{I}+\boldsymbol{A} I+A 可逆,所以 ( I + A ) − 1 ( I + A ) = I (\boldsymbol{I}+\boldsymbol{A})^{-1}(\boldsymbol{I}+\boldsymbol{A})=\boldsymbol{I} (I+A)1(I+A)=I. 展开后有 ( I + A ) − 1 + ( I + A ) − 1 A = I (\boldsymbol{I}+\boldsymbol{A})^{-1}+(\boldsymbol{I}+\boldsymbol{A})^{-1} \boldsymbol{A}=\boldsymbol{I} (I+A)1+(I+A)1A=I.

于是 ( I + A ) − 1 = I − ( I + A ) − 1 A (\boldsymbol{I}+\boldsymbol{A})^{-1}=\boldsymbol{I}-(\boldsymbol{I}+\boldsymbol{A})^{-1} \boldsymbol{A} (I+A)1=I(I+A)1A,两边同时取范数得

∥ ( I + A ) − 1 ∥ = ∥ I − ( I + A ) − 1 A ∥ ⩽ ∥ I ∥ + ∥ ( I + A ) − 1 A ∥ ⩽ 1 + ∥ ( I + A ) − 1 ∥ ⋅ ∥ A ∥ , \left\|(\boldsymbol{I}+\boldsymbol{A})^{-1}\right\|=\left\|\boldsymbol{I}-(\boldsymbol{I}+\boldsymbol{A})^{-1} \boldsymbol{A}\right\| \leqslant\|\boldsymbol{I}\|+\left\|(\boldsymbol{I}+\boldsymbol{A})^{-1} \boldsymbol{A}\right\| \leqslant 1+\left\|(\boldsymbol{I}+\boldsymbol{A})^{-1}\right\| \cdot\|\boldsymbol{A}\|, (I+A)1 = I(I+A)1A I+ (I+A)1A 1+ (I+A)1 A,

所以
( 1 − ∥ A ∥ ) ∥ ( I + A ) − 1 ∥ ⩽ 1 ⟹ ∥ ( I + A ) − 1 ∥ ⩽ 1 1 − ∥ A ∥ . (1-\|\boldsymbol{A}\|)\left\|(\boldsymbol{I}+\boldsymbol{A})^{-1}\right\| \leqslant 1 \Longrightarrow\left\|(\boldsymbol{I}+\boldsymbol{A})^{-1}\right\| \leqslant \frac{1}{1-\|\boldsymbol{A}\|} . (1A) (I+A)1 1 (I+A)1 1A1.

方法二:利用 1 1 + x = ∑ n = 0 ∞ ( − 1 ) n x n , x ∈ ( − 1 , 1 ) \frac{1}{1+x}=\sum\limits_{n=0}^{\infty}(-1)^nx^n,x\in(-1,1) 1+x1=n=0(1)nxn,x(1,1)推广到矩阵中

使用级数展开: 当 ∥ A ∥ < 1 \|A\| < 1 A<1 时,可以考虑使用Neumann级数(即幂级数)展开 ( I + A ) − 1 (I + A)^{-1} (I+A)1
( I + A ) − 1 = I − A + A 2 − A 3 + ⋯ (I + A)^{-1} = I - A + A^2 - A^3 + \cdots (I+A)1=IA+A2A3+
这个级数在 ∥ A ∥ < 1 \|A\| < 1 A<1 时收敛.

计算级数的范数:对上述级数每一项的范数求和,可以得到:
∥ ( I + A ) − 1 ∥ ≤ ∥ I ∥ + ∥ A ∥ + ∥ A 2 ∥ + ∥ A 3 ∥ + ⋯ \|(I + A)^{-1}\| \leq \|I\| + \|A\| + \|A^2\| + \|A^3\| + \cdots (I+A)1I+A+A2+A3+
利用矩阵的范数性质,有 ∥ A k ∥ ≤ ∥ A ∥ k \|A^k\| \leq \|A\|^k AkAk,于是:
∥ ( I + A ) − 1 ∥ ≤ 1 + ∥ A ∥ + ∥ A ∥ 2 + ∥ A ∥ 3 + ⋯ = 1 1 − ∥ A ∥ \|(I + A)^{-1}\| \leq 1 + \|A\| + \|A\|^2 + \|A\|^3 + \cdots = \frac{1}{1 - \|A\|} (I+A)11+A+A2+A3+=1A1
其中使用了几何级数求和公式 ∑ k = 0 ∞ x k = 1 1 − x \sum\limits_{k=0}^\infty x^k = \frac{1}{1-x} k=0xk=1x1,其中 ∣ x ∣ < 1 |x| < 1 x<1.

因此,当 ∥ A ∥ < 1 \|A\| < 1 A<1 时, I + A I + A I+A 是可逆的,并且有 ∥ ( I + A ) − 1 ∥ ≤ 1 1 − ∥ A ∥ \|(I+A)^{-1}\| \leq \frac{1}{1-\|A\|} (I+A)11A1.得证.

A ∈ R n × n , A = A T \boldsymbol{A} \in R^{n \times n}, \boldsymbol{A}=\boldsymbol{A}^{T} ARn×n,A=AT ,试证明: ∥ A ∥ 2 ≤ ∥ A ∥ ∞ \|\boldsymbol{A}\|_{2} \leq\|\boldsymbol{A}\|_{\infty} A2A

λ 0 \lambda_0 λ0 A T A \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} ATA 的最大特征值, 对应的特征向量为 x ≠ 0 \boldsymbol{x} \neq 0 x=0, 于是有 A T A x = λ 0 x , \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A x}=\lambda_0 \boldsymbol{x}, ATAx=λ0x,两边同时取范数得 ∥ A T A x ∥ = ∥ λ 0 x ∥ = λ 0 ∥ x ∥ \|\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A x}\|=\|\lambda_0 \boldsymbol{x}\|=\lambda_0\|\boldsymbol{x}\| ATAx=λ0x=λ0x.由于 A = A T \boldsymbol{A}=\boldsymbol{A}^{T} A=AT,则

λ 0 ∥ x ∥ = ∥ A 2 x ∥ ⩽ ∥ A 2 ∥ ⋅ ∥ x ∥ ⩽ ∥ A ∥ ⋅ ∥ A ∥ ⋅ ∥ x ∥ = ∥ A ∥ 2 ⋅ ∥ x ∥ \lambda_0\|\boldsymbol{x}\|=\|\boldsymbol{A^2 x}\|\leqslant \|\boldsymbol{A^2}\|\cdot \|\boldsymbol{ x}\|\leqslant \|\boldsymbol{A}\|\cdot \|\boldsymbol{A}\|\cdot \|\boldsymbol{x}\|=\|\boldsymbol{A}\|^2 \cdot \|\boldsymbol{x}\| λ0x=A2xA2xAAx=A2x

由于 x ≠ 0 \boldsymbol{x} \neq 0 x=0,所以 λ 0 ⩽ ∥ A ∥ 2 \lambda_0\leqslant \|\boldsymbol{A}\|^2 λ0A2.当算子范数取无穷范数时,即有 ∥ A ∥ ∞ ⩾ λ 0 \|\boldsymbol{A}\|_{\infty}\geqslant \sqrt{\lambda_0} Aλ0 .而当算子范数取的是2-范数时,
∥ A ∥ 2 = λ max ⁡ ( A T A ) = λ 0 \|\boldsymbol{A}\|_{2}=\sqrt{\lambda_{\max}(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A })} =\sqrt{\lambda_0} A2=λmax(ATA) =λ0

因此
∥ A ∥ 2 = λ 0 ⩽ ∥ A ∥ ∞ . \|\boldsymbol{A}\|_{2}=\sqrt{\lambda_0} \leqslant\|\boldsymbol{A}\|_{\infty} . A2=λ0 A.

I   A ∈ R n × n , ∥ A ∥ < 1 I \mathrm{~A} \in R^{n \times n},\|A\|<1 I ARn×n,A<1, 记
S k = I + A + A 2 + ⋯ + A k , S_{k}=I+A+A^{2}+\cdots+A^{k}, Sk=I+A+A2++Ak,

其中 I I I 为单位矩阵, 证明:
(1) I − A I-A IA 可逆;
(2) lim ⁡ k → ∞ S k = ( I − A ) − 1 \lim\limits _{k \rightarrow \infty} S_{k}=(I-A)^{-1} klimSk=(IA)1.

(1) 首先注意到对于任何矩阵 A A A 和其范数 ∥ A ∥ \|A\| A ,有 ∥ A ∥ < 1 \|A\|<1 A<1 .我们利用范数的性质来证明 I − A I-A IA 可逆.
∥ A ∥ < 1 \|A\|<1 A<1 可知,矩阵 A A A 的谱半径 ρ ( A ) \rho(A) ρ(A) 也小于 1 .这是因为谱半径 (即 A A A 的最大绝对特征值) 不超过矩阵的任意范数.于是,矩阵 I − A I-A IA 的特征值为 1 − λ 1-\lambda 1λ ,其中 λ \lambda λ A A A 的一个特征值.即有:
∣ λ ∣ ⩽ ρ ( A ) ⩽ ∥ A ∥ < 1 \left|\lambda\right| \leqslant \rho(\boldsymbol{A}) \leqslant\|\boldsymbol{A}\|<1 λρ(A)A<1

因为 ∣ λ ∣ < 1 |\lambda|<1 λ<1 ,所以 1 − λ ≠ 0 1-\lambda \neq 0 1λ=0 ,即 I − A I-A IA 的所有特征值都不为 0 .这表明 I − A I-A IA 是非奇异的,即 I − A I-A IA 可逆.

(2) 我们先计算 ( I − A ) S k (I-A) S_{k} (IA)Sk :
( I − A ) S k = ( I − A ) ( I + A + A 2 + ⋯ + A k ) = I + A + A 2 + ⋯ + A k − ( A + A 2 + A 3 + ⋯ + A k + A k + 1 ) = I − A k + 1 . \begin{aligned} (I-A) S_{k} & =(I-A)\left(I+A+A^{2}+\cdots+A^{k}\right) \\ & =I+A+A^{2}+\cdots+A^{k}-\left(A+A^{2}+A^{3}+\cdots+A^{k}+A^{k+1}\right) \\ & =I-A^{k+1} . \end{aligned} (IA)Sk=(IA)(I+A+A2++Ak)=I+A+A2++Ak(A+A2+A3++Ak+Ak+1)=IAk+1.
由于 ∥ A k + 1 ∥ ≤ ∥ A ∥ k + 1 \left\|A^{k+1}\right\| \leq\|A\|^{k+1} Ak+1 Ak+1 ∥ A ∥ < 1 \|A\|<1 A<1 ,所以 lim ⁡ k → ∞ ∥ A ∥ k + 1 = 0 \lim\limits_{k\to\infty}\|A\|^{k+1}=0 klimAk+1=0, 也即 A k + 1 A^{k+1} Ak+1 k → ∞ k \rightarrow \infty k 时趋向于零矩阵 ( lim ⁡ k → ∞ A k + 1 = O ) (\lim\limits_{k\to\infty}A^{k+1}=\boldsymbol{O} ) (klimAk+1=O).因此,有:
lim ⁡ k → ∞ ( I − A ) S k = lim ⁡ k → ∞ ( I − A k + 1 ) = I . \lim _{k \rightarrow \infty}(I-A) S_{k}=\lim _{k \rightarrow \infty}(I-A^{k+1})=I . klim(IA)Sk=klim(IAk+1)=I.
由于 I − A I-A IA 可逆,那么左乘其逆矩阵得到:
S k = ( I − A ) − 1 ( I − A ) S k = ( I − A ) − 1 ( I − A k + 1 ) . S_{k}=(I-A)^{-1}(I-A) S_{k}=(I-A)^{-1}\left(I-A^{k+1}\right) . Sk=(IA)1(IA)Sk=(IA)1(IAk+1).
随着 k → ∞ , A k + 1 → O k \rightarrow \infty, A^{k+1} \rightarrow O k,Ak+1O :
lim ⁡ k → ∞ S k = ( I − A ) − 1 ( I − O ) = ( I − A ) − 1 . \lim _{k \rightarrow \infty} S_{k}=(I-A)^{-1}(I-O)=(I-A)^{-1} . klimSk=(IA)1(IO)=(IA)1.
这样,我们便证明了 lim ⁡ k → ∞ S k = ( I − A ) − 1 \lim\limits _{k \rightarrow \infty} S_{k}=(I-A)^{-1} klimSk=(IA)1.

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值