怎么理解大模型推理时的Top_P参数?

本篇博客介绍一下大模型推理时的Top_P参数,Top_P与Top_K,Beamsearch,temperature 都是什么关系以及该如何选择Top_P参数。
在这里插入图片描述

一、什么是Top_P参数?

在大语言模型推理过程中,Top_P参数(也叫 核采样)是一种控制生成文本的策略,用于调整生成的多样性和准确性。它的全称是 累积概率采样(Cumulative Probability Sampling)。

在文本生成任务中,模型会根据当前的上下文预测下一个单词或标记。在传统的 贪婪解码(greedy decoding)中,模型每次都会选择概率最大的单词。然而,这样的策略可能会导致生成的文本过于单一、缺乏多样性。

为了增加多样性,top_p 提供了一种替代方法。它基于模型预测的单词概率来控制生成的单词选择范围。

二、工作原理

Top_P策略: 在每次生成下一个单词时,模型首先计算出所有可能单词的概率分布。然后,将这些单词按照概率从高到低排序,直到累计的概率和超过 Top_P的阈值。例如,如果 Top_P= 0.9,模型会选择概率最高的单词,直到这些单词的累计概率大于或等于 90%。

这样,模型只会从这部分可能的单词中随机选择一个生成。通过调整 Top_P的值,我们可以控制生成文本的多样性。
举个例子
假设模型预测下一个词的概率分布如下(按概率降序排列):
在这里插入图片描述
如果 Top_P= 0.9,我们会从前两个单词(“apple” 和 “banana”)中随机选择一个,因为它们的累计概率(0.5 + 0.3 = 0.8)还没有达到 0.9。模型会继续加入下一个单词(“cherry”),直到累计概率大于或等于 0.9(0.5 + 0.3 + 0.1 = 0.9)。因此,模型会从 “apple”、“banana” 和 “cherry” 中随机选择一个词作为下一个生成的单词。

三、top_p和top_k是什么关系?

Top_K策略:Top_K只考虑概率最高的 k 个单词,不管它们的累计概率是多少。例如,Top_K= 3 会选择概率最高的 3 个单词,然后从这 3 个单词中随机选择,k是固定的。
Top_P策略:Top_P根据累计概率来选择单词的候选集,其候选单词数目是不固定的,可以动态变化。这种方法更灵活,通常会使得生成的文本更加自然。

四、Top_P和BeamSearch是什么关系?

Top_P和 Beam Search 都是自然语言生成任务中常用的解码策略,用于生成模型输出的文本。虽然它们都旨在改善生成过程,但它们的工作原理和效果有很大的不同。

  • Beam Search 和 Top_P的主要区别:Beam Search 是一种确定性的策略,它尝试找到最优的序列路径,通过维持多个候选路径来减少错误并提高输出质量。而 Top_P则是一种随机采样策略,它通过限制候选词的累积概率范围来控制多样性,因此生成的文本可能更加多样化,但也可能不如 Beam Search 那样稳定和精确。
  • Beam Search 和 Top_P可以结合使用:在一些高级的生成模型中,可以将 Top_P和 Beam Search 结合起来。具体来说,可以在 Beam Search 中的每一步进行采样(即在每个候选路径上使用 Top_P进行选择),这可以增加生成的多样性,同时仍然保持 Beam Search 对最优路径的探索。

五、Top_P和temperature 是什么关系?

  • Top_P和 temperature 都是用于控制大语言模型生成文本时随机性和多样性的参数,它们在调整生成的文本质量和多样性方面有不同的作用。虽然它们的功能有重叠,但它们的工作原理不同,可以相互配合使用,以获得更好的生成效果。
  • Top_P控制候选词的范围:它限制了候选词的数量或概率范围。通过设置 Top_P,你决定了模型在每一步生成时,能够从哪些单词中选择。Top_P是一个 动态 的过滤器,它的候选集大小是变化的,取决于单词的概率分布。
  • temperature 控制概率分布的平滑性:它改变所有单词的概率分布的形状,影响生成时的“选择犹豫度”。较低的 temperature 会使概率分布更加尖锐,模型倾向于选择概率最高的单词。较高的 temperature 会使概率分布更加平滑,生成的文本更加多样化。

六、Top_P的选择

Top_P控制的是从可能的单词中采样的范围。较低的 Top_P会导致生成更加确定和保守的结果,而较高的 top_p 会生成更具多样性和创新性的文本。

  1. 低 Top_P值(如 0.7 或更低)
    • 适用场景:当你希望生成的文本具有更高的确定性和一致性时,适合选择较低的 Top_P值。较低的 Top_P会让模型更倾向于选择概率较高的单词,从而生成的文本通常更加保守、连贯和符合预期。
    • 优点:更高的连贯性:生成的文本更加符合语法和逻辑,减少了出现不相关或不合适单词的概率。更稳定的输出:生成的结果会更接近训练数据中的模式,适合一些需要较为保守、标准的输出场合(如新闻报道、技术文档等)。
    • 缺点:多样性较差:文本会较为单一,缺乏创意和多样性,适合重复性较高的任务,但不适合需要创意的场合。
      例如:在文本摘要、对话系统、问答系统中,如果想要结果更加简洁、清晰和一致,可以选择较低的 Top_P 值(如 0.7 或 0.8)。
  2. 中等 Top_P值(如 0.8 到 0.95)
    • 适用场景:中等的 top_p 值提供了一定的随机性和多样性,同时又保持了文本的合理性。它适用于大多数日常生成任务,能够生成既连贯又富有创意的文本。
    • 优点:平衡多样性和连贯性:生成的文本既有创意又能保持较高的连贯性,适合多种场合(如写作助手、内容生成、聊天机器人等)。
      较为自然的输出:文本有时会包含一些创新的表达或意外的单词选择,但通常不会变得过于离题。
      * 缺点:可能出现偶尔的不连贯:虽然生成的文本较为自然,但在某些情况下,可能会偶尔出现一些不太符合上下文的单词,尤其是在处理复杂话题时。
      例如:对于创意写作、内容生成(如文章或小说生成)、对话系统等任务,可以使用 0.8 到 0.9 的 Top_P值。
  3. 高 Top_P值(如 0.95 或更高)
    • 适用场景:当你希望生成的文本有更多的创意、多样性和不可预测性时,选择较高的 Top_P值。较高的 Top_P值允许模型从更大的词汇空间中进行采样,能够生成更多新颖、意外的文本。
    • 优点:更高的创意性:文本更具创造性,生成的内容可能包含更独特、有趣的词汇和表达方式。
      更丰富的多样性:生成的文本不容易变得重复,可以适应一些需要探索性或新颖性的应用场景。
    • 缺点:可能会缺乏连贯性:由于允许更多的随机性和不可预测性,生成的文本可能会出现一些不合适或不连贯的部分,尤其是在较复杂的任务中。生成结果不稳定:每次生成的文本可能会大不相同,因此可能不适用于那些要求高一致性和精确性的任务。例如:对于需要较高创意的任务(如诗歌生成、故事创作等)或对话系统中富有多样性的对话,可以选择更高的 Top_P值(如 0.95 或更高)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱睡觉的咋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值