傅里叶变换

傅里叶变换是一种正交变换,在一维信号处理中广泛使用,并可扩展到图像处理领域。满足狄里赫莱条件的函数可以进行傅里叶变换,其幅度谱和相位谱提供了信号的频域信息。二维傅里叶变换适用于二维函数,且变换具备多种性质,如线性、共轭对称性和卷积定理等,这些在实际运算中极具价值。
摘要由CSDN通过智能技术生成

傅里叶变换

引言

傅里叶变换是大家所熟知的正交变换。在一维信号处理中得到了广泛应用。把这种处理方法推广到图像处理中是很自然的事。这里将对傅里叶变换的基本概念及算法作一些简单的复习。

则有以下二式成立

image-20230321174222350

式子中x时时域变量,u是频率变量

令:

image-20230321174517509

image-20230321174556337

通常把以上公式称为傅里叶变换对(互为傅里叶逆变换)

傅里叶变换的定义及基本概念

傅里叶变换在数学中的定义是严格的。设f(x)为x的函数,如果满足下面的狄里赫莱条件:

  1. 具有有限个间断点;
  2. 具有有限个极值点;
  3. 绝对可积。

函数f(x)的傅里叶变换一般是一个复量,它可以由以下式子表示

image-20230322190904997

或者写成指数形式

image-20230322190957746

把|F(w)|叫做f(x)的傅里叶谱,而
ϕ ( ω ) \phi(\omega) ϕ(ω)
叫做相位谱

例题:

image-20230322191344056

image-20230322191349692

image-20230322191404065

image-20230322191429864

则f(x)的幅度谱及相位谱:

image-20230322191454084

由上面例子可以建立下面的概念:

  1. 只要满足狄里赫莱条件,连续函数就可以进行傅里叶变换,实际上这个条件在工程运用中总是可以满足的。
  2. 连续非周期函数的傅里叶谱是连续的非周期函数,连续的周期函数的傅里叶谱是离散的非周期函数。

傅里叶变换可推广到二维函数。如果二维函数f(x,y)满足狄里赫莱条件,那么将有下面二维傅里叶
变换对存在:

image-20230322191647938

image-20230322191655978

傅里叶变换的性质

傅里叶变换有许多重要性质。这些性质为实际运算处理提供了极大的便利。这里,仅就二维傅里叶变换为例列出其主要的几个性质。

  1. 可分性
  2. 线性
  3. 共轭对称性
  4. 旋转性
  5. 比例变换特性
  6. 怕斯维尔(Parseval)定理
  7. 相关定理
  8. 卷积定理
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

菜小田

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值