第十五、十六周动态规划总结(二)

这两周的时间,自己继续学习动态规划的相关知识,重点是背包问题和区间DP的学习以及一些典型例题的总结和分析。


01背包问题

题意是说有n件物品,每件物品的重量为w[i],价值为c[i],有一个容量为V的背包,问如何选取物品,可以使得背包内物品的总价值最大,每件物品只有一个。然后考虑这个题呢,没接触DP的话,会首先想到枚举,但是,肯定会超时的。所以用动态规划解决,可以令dp[i][v]表示前i件物品恰好装入容量为v的背包中所能获得最大价值。考虑到有两种策略
第一种是不放第i件物品,问题就可以转化为前i-1件物品恰好装入容量为v的背包中所能获得的最大价值,就是dp[i-1][v]。
第二种就是如果放第i件物品,问题就转化为前i-1件物品恰好装入容量为v-w[i]的背包中能够获得的最大价值,也就是dp[i-1][v-w[i]]+c[i]。
然后就可以列出状态转移方程dp[i][v]=max{dp[i-1][v],dp[i-1][v-w[i]]+c[i]}。
因为dp[i][v]只与之前的状态有关,就可以从1到n枚举i,v是从0到V,边界条件为dp[0][v],然后逐渐把整个数组递推出来。dp[i][v]就是为v的情况,枚举并且取最大值就可以了。
然后这个题目还可以用滚动数组的技巧来进行优化。计算dp[i][v]的时候只需要dp[i-1][v]左侧部分的数据,所以就直接写成dp[v],然后枚举的方向为逆序:从1到n枚举i,从v到0枚举V,状态转移方程就可以写成dp[v]=max(dp[v],dp[v-w[i]]+c[i])。
可以考虑到,第i件物品放还是不放产生的最大值由前面的i-1件物品的最大值决定,每个物品都可以看作一个阶段,由上一个阶段的状态得到。
优化代码:

for (int i = 1; i <= n; i++) {
		for (int v = V; v >= w[i]; v--) { //逆序枚举
			dp[v] = max(dp[v], dp[v - w[i]] + c[i]);
		}
  }

完全背包问题

完全背包问题和01背包问题的唯一区别就是,完全背包的物品数量每种都有无穷件,只要选的时候不超过容量就可以,01背包的物品数量每种只有1件。也是有两种策略:
第一种和01背包一样,不放第i件物品,就是dp[i][v]=dp[i-1][v]。
第二种就开始有区别了,01背包每件物品只有一个,完全背包每件物品有无穷个,所以选择放完第i件物品之后状态不是转移到dp[i-1][v-w[i]],而是转移到dp[i][v-w[i]],放了第i件物品后还能继续放第i件物品,一直到v-w[i]不再大于等于零。
然后就可以列出状态转移方程dp[i][v]=max(dp[i-1][v],dp[i][v-w[i]]+c[i]),边界为dp[0][v]=0。
唯一的区别就是第二个参数是dp[i],不是dp[i-1]。
优化之后的形式也为dp[v]=max(dp[v],dp[v-w[i]]+c[i]),边界为dp[v]=0。唯一不同的地方就是,v的枚举顺序是正向枚举,01背包是逆向枚举,完全背包中每一步的选择都会对接下来的各种情况产生影响,所以只能正序。
优化代码:

for (int i = 1; i <= n; i++) {
		for (int v = w[i]; v <=V; v++) { //正向枚举
			dp[v] = max(dp[v], dp[v - w[i]] + c[i]);
		}
  }

多重背包问题

多重背包就是01背包和完全背包的混合体,其中既有有限量的物品又有无限量的物品,这里可以使用二进制的思想进行优化。就是把01背包和完全背包组合在一起就可以,下面是基础模板:

for(int i=1; i<=n; i++)//每个物品
    for(int k=0; k<num[i]; k++)//调用num[i]次01背包代码
         for(int j=m; j>=weight[i]; j--)//01背包
                dp[j]=max(dp[j],dp[j-weight[i]]+value[i]);

区间DP

区间DP就是对区间的动态规划,一般通过记忆化搜索和递推实现。一般思路就是将大区间化成小区间来处理,然后对小区间处理,再回溯求出区间的最大值,通过保证小区间的最优达到大区间的最优。
典型例题就是石子合并问题,P1880 [NOI1995] 石子合并,题意是说有N堆石子,现要将石子有次序地合并成一堆,规定每次只能选相邻的两堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分,计算出将N堆石子合并成1堆的最小得分和最大得分。如果一开始的最左端的石子和最右端的石子可以合并成一堆,说明它们之间的石子也已经被合并,可以记作l到r之间的石子,只有这样l和r才可能相邻被合并,在任意时刻,任意一堆石子都可以用一个闭区间 [ l,r ]来描述,表示这堆石子是由最初的第l到r堆石子合并而成的,然后一定会有一个数k,在l到k堆石子已经合成了一堆,第k+1到r堆石子被合并成一堆,然后这两堆石子再合并成 [ l,r ]。就是两个长度较小的区间上的信息向一个更长区间发生了状态转移,划分点 k 就是转移的决策。应该把区间长度length作为DP的阶段,区间长度可以由左端点和右端点表示,就是lenth=r-l+1。在这里插入图片描述
状态转移方程:
在这里插入图片描述

典型例题

P4170 [CQOI2007]涂色,题意是说给定一个长度为n的木板,每次可以选择一个连续长度的木板将它染成同一种颜色,后来的颜色可以覆盖之前的颜色,给定一个目标颜色的木板,问最少需要花多少次才能染成目标木板。要求如何涂到目标长度,可以反过来想,把整块木板涂成相同颜色,最后对答案加1。因为在一个相同颜色块上面涂别的颜色相当于把这个别的颜色再涂回去。用f[i][j][c]表示将区间[i][j]全部涂成颜色c所需要的最少步数,枚举中转点k和颜色c,就可以得出状态转移方程:
在这里插入图片描述
值得注意的是,对于区间[i,j],可能由区间[i,k]+[k+1,j]转化而来,还有可能是由区间[i,j]直接转化而来,就是把整个区间涂好某种颜色之后,再把整个区间改成另一种颜色。所以在状态转移的时候可以维护一个最小的f[i][j][c],后面再用这个最小值再去更新f[i][j][c],最后可以求出整段木板涂成某一种颜色的最小代价,最小代价再加1就是从空木板涂成目标木板所需要的最小步数。

void solve()
{
    cin>>s+1;
    int n=strlen(s+1);
    memset(f,0x3f,sizeof f);
    for(int i=1; i<=n; i++)
        for(char c='A'; c<='Z'; c++)
            f[i][i][(int)(c-'A')]=(s[i]==c?0:1);
    for(int len=2; len<=n; len++)
    {
        for(int i=1; i+len-1<=n; i++)
        {
            int j=i+len-1;
            for(int k=i; k<=j-1; k++)
            {
                int mi=1e18;
                for(char c='A'; c<='Z'; c++)
                {
                    int p=(int)(c-'A');
                    f[i][j][p]=min(f[i][j][p],f[i][k][p]+f[k+1][j][p]);
                    mi=min(mi,f[i][j][p]);
                }
                for(char c='A'; c<='Z'; c++)
                {
                    int p=(int)(c-'A');
                    f[i][j][p]=min(f[i][j][p],mi+1);
                }
            }
        }
    }
    int res=inf;
    for(char c='A'; c<='Z'; c++)
        res=min(res,f[1][n][(int)(c-'A')]);
    cout<<res+1<<endl;
}

P1896 [SCOI2005] 互不侵犯,题意就是说在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案,国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。可以用一个二进制数字来表示某一行的国王放置情况,如果第i位是1,就表示位置i处放了国王,如果为0就表示没有放置国王。对于某个数字,其代表的放置状态可能不合法,如果一个数的二进制有两个相邻的1,说明不合法,所以可以右移一位与原数按位与就可以判断是否合法。
确定状态转移方程:可以定义dp[i][s][k]为当前放置到第i行,当前行的放置状态为s,当前已经放了k个国王的方案数。确定最终的状态转移方程为dp[i][s][k]+=dp[i-1][ss][k-get(s)],ss代表第i-1行的放置状态,get(s)代表在s对应放置状态下该行放置国王的个数。
边界处理:在第一行中,放置状态为s且刚好放置了get(s)个国王的方案数是1种,就是dp[1][s][get(s)]=1。

#include<iostream>
using namespace std;
const int n = 12;
typedef long long LL;
LL dp[n][1 << n][n * n];
int get(int x) {   //返回x对应的二进制中1的个数
	int cnt = 0;
	while (x) {
		x -= x & (-x);  //减去最低位的1  
		cnt++;
	}
	return cnt;
}
//判断数x是否是合法的放置状态
int check1(int x) {
	return (x & (x << 1)) == 0;
}
//判断x和y代表的放置状态是否冲突
int check2(int x, int y) {
	if (x & y) return 0;
	if ((x << 1) & y) return 0;
	if (x & (y << 1)) return 0;
	return 1;
}
int main() {
	int N, K;
	cin >> N >> K;
	for (int i = 1; i <= N; i++) {      //逐行放置
		for (int s = 0; s < (1 << N); s++) {   //枚举所有可能的放置状态
			if (check1(s)) {      //若s为合法的放置状态
				if (i == 1) { dp[i][s][get(s)] = 1; }  //边界处理
				else {
					for (int ss = 0; ss < (1 << N); ss++) {   //枚举上一行的放置状态   
						if (check2(s, ss) && check1(ss)) {   //检查当前行与上一行是否冲突 
							for (int k = get(s); k <= K; k++) {
								dp[i][s][k] += dp[i - 1][ss][k - get(s)];
							}
						}
					}
				}
			}
		}
	}
	//统计答案
	LL res = 0;
	for (int s = 0; s < (1 << N); s++) res += dp[N][s][K];
	cout << res << endl;
	return 0;
}

P2015 二叉苹果树,题意就是说有一棵苹果树,如果树枝有分叉,一定是分2叉,这棵树共有N个结点,编号为1-N,树根编号一定是1,用一根树枝两端连接的结点的编号来描述一根树枝的位置,现在这颗树枝条太多,需要剪枝,但是一些树枝上长有苹果,给定需要保留的树枝数量,求出最多能留住多少苹果。可以用f[i][j]表示以i为根节点的子树,保留j条树枝时,保留的最大苹果数,还能得出的一个条件是当某条边被保留下来时,从根节点到这条边的路径上的所有边也都必须保留下来。
状态转移方程:
在这里插入图片描述

保留一条边必须保留从根节点到这条边路径上的所有边,如果想从u的子节点v的子树上留边,也要留下u,v之间的连边,连接方式用邻接矩阵、邻接表实现。

int n,q,x,y,v,tot,h[101],e[101],f[101][101],s[101][101];
struct node
{
	int to,next;
}a[220];
void add(int x,int y)
{
	a[++tot]=(node){y,h[x]};
	h[x]=tot;
}
void dp(int k)
{
    e[k]=1;//记录当前节点已经被访问 
    for(int i=h[k];i>0;i=a[i].next)//,枚举边 
    {
    	if(e[a[i].to]==1) continue;//如果它的子节点已经被访问过,那就不用做了。 
    	dp(a[i].to);//递归 
    	for(int j=q;j>0;j--)
    	{
    		for(int g=j-1;g>=0;g--)
    		{
    			f[k][j]=max(f[k][j],f[a[i].to][g]+f[k][j-g-1]+s[k][a[i].to]);

    		}
    	}
    }
}
int main()
{
    cin>>n>>q;
    for(int i=1;i<=n-1;i++)
    {
    	cin>>x>>y>>v;
    	add(x,y);
    	add(y,x);
    	s[x][y]=s[y][x]=v;//记录权值 
    }
    dp(1);
    cout<<f[1][q];//q是要保留的树枝数量 
	return 0;
}

小结:
这两周动态规划的学习算是结束了,但接下来还有更加艰难的挑战再等着自己。坚定信心,一鼓作气,全力冲刺,不留遗憾!!!下周要继续努力呀!!!

1. 第一:学习基础知识 在第一,我主要学习了电子测试工程师的基础知识,包括电路理论、数字电路、模拟电路等。同时,我也开始了解不同类型的测试设备和测试方法,例如万用表、示波器、信号发生器等。 2. 第:实验操作 在第,我开始进行实验操作,使用不同的测试设备进行电路测试,例如电压测试、电流测试等。通过实验,我深入了解了测试设备的使用方法和注意事项,同时也掌握了电路测试的基础技能。 3. 第三:软件开发 在第三,我开始学习测试软件的开发,包括编程语言、测试框架等。我使用Python编写了一个简单的测试程序,并通过该程序进行了一些简单的测试。 4. 第四:测试计划制定 在第四,我开始学习测试计划的制定,包括测试目标、测试方法、测试流程等。我通过实际项目的测试计划制定,学习了如何根据项目需求制定合理的测试计划。 5. 第五:测试用例设计 在第五,我开始学习测试用例的设计,包括测试场景、测试步骤、预期结果等。我通过实际项目的测试用例设计,学习了如何设计全面、有效的测试用例。 6. 第六:测试执行 在第六,我开始进行测试执行,按照测试计划和测试用例进行测试。在测试执行过程中,我掌握了如何记录测试结果、如何处理测试问题等。 7. 第七:测试报告编写 在第七,我开始学习测试报告的编写,包括测试结果、测试问题、测试建议等。我通过实际项目的测试报告编写,学习了如何撰写清晰、准确的测试报告。 8. 第八:测试数据分析 在第八,我开始学习测试数据的分析,包括数据收集、数据处理、数据分析等。我通过实际项目的测试数据分析,学习了如何通过数据分析发现问题、提出改进建议。 9. 第九:测试流程改进 在第九,我开始学习测试流程的改进,包括流程优化、流程标准化等。我通过实际项目的测试流程改进,学习了如何通过流程改进提高测试效率、降低测试成本。 10. 第十总结与反思 在第十,我对整个学习过程进行了总结与反思,回顾了自己的学习成果和不足之处,并为未来的学习和工作制定了合理的计划和目标。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

暗紫色的乔松(-_^)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值