数学建模weekend-2

在word中防止图片不清晰:

 

打开“选项”,接着切换到“高级”选项卡下。

选中“不压缩文件中的图像”。

再将“默认分辨率”修改为“高保真”。

图片转为 .wmf格式 ,可用Adobe illstrator 转化为 .wmf 。

word中的数学公式:

1.插入自定义公式:

可以点击插入——符号——公式——墨迹公式,然后借助鼠标输入新的公式点击插入即可

2.nuicodemath方法:

在Word中快速编写公式 - 知乎 (zhihu.com)

word中插入大括号:

1.插入平躺的大括号:

插入->公式->括号->单方括号,在插入的括号的虚线框中回车Enter即可增加条件。

在word中,选工具栏上的‘插入’--‘对象;调出 ‘对象’窗口。在 ‘新建’的对象类型中选择‘WPS 公式 3.0’ ,选择括号区域

 或者,如果公式里面没有,该可以点插入--形状--单大括号,再旋转90度。

条件多项式公式对齐:

创建一个三行公式(快捷键:Alt + =)

插入三行公式

鼠标放到最后一个输入框后边,右键,在后面插入公式,将其拓展为四行公式,同上操作,可以拓展为五行公式。

上下左右将光标控制到第一行行首,使得第一行处于全选状态

输入 & 符号

用上下左右将光标控制到第二行行首,使得第二行处于全选状态

输入&符号,其他行同理操作,即可实现对齐

有限差分法:

        有限差分法是一种求解微分方程的数值方法,其面对的对象是微分方程,包括常微分方程和偏微分方程。此外,有限差分法需要对微分进行近似,这里的近似采取的是离散近似,使用某一点周围点的函数值近似表示该点的微分。

参考:微分方程数值求解——有限差分法 - 知乎 (zhihu.com)

(一)线性规划

        线性规划问题就是在一组先行约束条件(s.t.)限制下,求一现行目标函数最大(max)或最小(min)问题。

        转标准函数:

                (1.)max转min通过目标函数添加负号可以完成目标函数的等价转化,例如:

max x_{1}+2x_{2}^{}等价于max -x_{1}-2x_{2}

                (2.)不等式约束转化为等式约束  通过添加辅助变量将不等式约束简化为等式约束,例如:

s.t. x_{1}+x_{2}\leqslant 3        x_{1},x_{2}\geqslant 0  转化为  s.t. x_{1}+x_{2}+x_{3}=3       x_{1},x_{2},x_{3}\geqslant 0

                (3.)自由变量转化为大于等于0变量 通过定义两个辅助非负变量来表示自由变量,例如:

max x_{1}+2x_{2}       s.t. x_{1}+x_{2}\leqslant 3        转化为标准形式:

x_{1}=x_{3}-x_{4}x_{2}=x_{5}-x_{6},  由此可得:

max x_{3}-x_{4}+2x_{5}-2x_{6}             s.t. x_{3}-x_{4}+x_{5}-x_{6}\leqslant 3        x_{3},x_{4},x_{5},x_{6}\geqslant 0

(二)整数规划

数学规划问题中一部分变量或者全部变量为整数变量的话,该数学规划问题就属于整数规划问题。

整数规划问题的特点在于其决策变量含有整数变量。

常见问题:

背包问题、广义指派问题、集合覆盖问题;

整数规划问题分类:

        Integer Linear Programming (线性整数规划):目标函数为线性,约束为线性,决策变量只含有整数变量的整数规划问题。线性整数规划问题目前是整数规划问题中研究最多,也是算法相对比较成熟一点的领域。

        Binary Linear Programming (0-1线性规划):目标函数为线性,约束为线性,决策变量只含有0-1变量的整数规划问题。线性整数规划都可以转化为0-1线性规划问题。

        Mixed-integer Linear Programming (混合整数线性规划):目标函数为线性,约束为线性,决策变量既含有整数变量也含有连续变量的整数规划问题。

        Nonlinear Integer Programming (非线性整数规划):目标函数和约束中至少有一个是非线性的,决策变量只含有整数变量的整数规划问题。非线性整数规划的难度要比线性整数规划问题难很多。

        Nonlinear Binary Programming (0-1非线性规划):目标函数和约束中至少有一个是非线性的,决策变量只含有0-1变量的整数规划问题。

        Mixed-integer Nonlinear Programming (0-1非线性混合整数规划):目标函数和约束中至少有一个是非线性的,决策变量既含有整数变量也含有连续变量的整数规划问题。

        Polynomial Binary Programming (0-1多项式规划):目标函数和约束中都是多项式函数,决策变量只含有0-1变量的整数规划问题。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

susu耶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值