在word中防止图片不清晰:
打开“选项”,接着切换到“高级”选项卡下。
选中“不压缩文件中的图像”。
再将“默认分辨率”修改为“高保真”。
图片转为 .wmf格式 ,可用Adobe illstrator 转化为 .wmf 。
word中的数学公式:
1.插入自定义公式:
可以点击插入——符号——公式——墨迹公式,然后借助鼠标输入新的公式点击插入即可
2.nuicodemath方法:
word中插入大括号:
1.插入平躺的大括号:
插入->公式->括号->单方括号,在插入的括号的虚线框中回车Enter即可增加条件。
在word中,选工具栏上的‘插入’--‘对象;调出 ‘对象’窗口。在 ‘新建’的对象类型中选择‘WPS 公式 3.0’ ,选择括号区域
或者,如果公式里面没有,该可以点插入--形状--单大括号,再旋转90度。
条件多项式公式对齐:
创建一个三行公式(快捷键:Alt + =)
插入三行公式
鼠标放到最后一个输入框后边,右键,在后面插入公式,将其拓展为四行公式,同上操作,可以拓展为五行公式。
上下左右将光标控制到第一行行首,使得第一行处于全选状态
输入 & 符号
用上下左右将光标控制到第二行行首,使得第二行处于全选状态
输入&符号,其他行同理操作,即可实现对齐
有限差分法:
有限差分法是一种求解微分方程的数值方法,其面对的对象是微分方程,包括常微分方程和偏微分方程。此外,有限差分法需要对微分进行近似,这里的近似采取的是离散近似,使用某一点周围点的函数值近似表示该点的微分。
参考:微分方程数值求解——有限差分法 - 知乎 (zhihu.com)
(一)线性规划
线性规划问题就是在一组先行约束条件(s.t.)限制下,求一现行目标函数最大(max)或最小(min)问题。
转标准函数:
(1.)max转min通过目标函数添加负号可以完成目标函数的等价转化,例如:
等价于
(2.)不等式约束转化为等式约束 通过添加辅助变量将不等式约束简化为等式约束,例如:
转化为
(3.)自由变量转化为大于等于0变量 通过定义两个辅助非负变量来表示自由变量,例如:
转化为标准形式:
令,
, 由此可得:
(二)整数规划
数学规划问题中一部分变量或者全部变量为整数变量的话,该数学规划问题就属于整数规划问题。
整数规划问题的特点在于其决策变量含有整数变量。
常见问题:
背包问题、广义指派问题、集合覆盖问题;
整数规划问题分类:
Integer Linear Programming (线性整数规划):目标函数为线性,约束为线性,决策变量只含有整数变量的整数规划问题。线性整数规划问题目前是整数规划问题中研究最多,也是算法相对比较成熟一点的领域。
Binary Linear Programming (0-1线性规划):目标函数为线性,约束为线性,决策变量只含有0-1变量的整数规划问题。线性整数规划都可以转化为0-1线性规划问题。
Mixed-integer Linear Programming (混合整数线性规划):目标函数为线性,约束为线性,决策变量既含有整数变量也含有连续变量的整数规划问题。
Nonlinear Integer Programming (非线性整数规划):目标函数和约束中至少有一个是非线性的,决策变量只含有整数变量的整数规划问题。非线性整数规划的难度要比线性整数规划问题难很多。
Nonlinear Binary Programming (0-1非线性规划):目标函数和约束中至少有一个是非线性的,决策变量只含有0-1变量的整数规划问题。
Mixed-integer Nonlinear Programming (0-1非线性混合整数规划):目标函数和约束中至少有一个是非线性的,决策变量既含有整数变量也含有连续变量的整数规划问题。
Polynomial Binary Programming (0-1多项式规划):目标函数和约束中都是多项式函数,决策变量只含有0-1变量的整数规划问题。