湘南学院ACM暑期排位赛第二场题解报告

D - Shortest Path 3

题目大意:

给你一个无向图,图中有 n n n 个顶点和 m m m 条边。每个顶点 i ( 1 ≤ i ≤ n ) i(1 \leq i \leq n) i(1in) 的权重为 a i a_{i} ai。每条边 j ( 1 ≤ j ≤ m ) j(1 \leq j \leq m) j(1jm) 双向连接顶点 u j u_{j} uj v j v_{j} vj ,权重为 b j b_{j} bj

该图中路径的权重定义为路径上出现的顶点和边的权重之和。

针对每个 i = 2 , 3 , … , n i = 2, 3, …, n i=2,3,,n 求解以下问题:

求从顶点 1 1 1 到顶点 i i i 的路径的最小权重。

数据范围

  • 2 ≤ n ≤ 2 × 1 0 5 2 \leq n \leq 2 \times 10^5 2n2×105
  • n − 1 ≤ m ≤ 2 × 1 0 5 n-1 \leq m \leq 2 \times 10^5 n1m2×105
  • 1 ≤ u j < v j ≤ n 1 \leq u_j < v_j \leq n 1uj<vjn
  • ( u i , v i ) ≠ ( u j , v j ) (u_i, v_i) \neq (u_j, v_j) (ui,vi)=(uj,vj) 如果 i ≠ j i \neq j i=j .
  • 图是连通的。
  • 0 ≤ a i ≤ 1 0 9 0 \leq a_i \leq 10^9 0ai109
  • 0 ≤ b j ≤ 1 0 9 0 \leq b_j \leq 10^9 0bj109
  • 所有输入值均为整数。

分析:

很明显可以看出来,这是从起点到每个点的最短距离,则这一题可以使用 D i j k s t r a Dijkstra Dijkstra算法求解,这里 D i j k s t r a Dijkstra Dijkstra算法是每个人都必须要掌握的板子,我便不再赘述了。要注意的是,朴素版本的 D i j k s t r a Dijkstra Dijkstra算法时间复杂度为 O ( n 2 ) O(n^2) O(n2)的,其中 n n n为点的数量。这里因为数据范围较大,所以需要使用堆优化版的,即优先队列 D i j k s t r a Dijkstra Dijkstra,时间复杂度为 O ( m × l o g ( n ) ) O(m\times log(n)) O(m×log(n)),其中 m m m为边的数量, n n n为点数。

当你确定算法后,就可以发现,其实这就是一道很简单的板子题,唯一不同的是:在 D i j k s t r a Dijkstra Dijkstra算法中并不存在点权这一说。如下图:
请添加图片描述
设·从 1 1 1 号点到 5 5 5 号点的最短距离就是上图中的路线,其中 w , x , y , z w, x, y, z w,x,y,z为边权, a 1 , a 2 , a 3 , a 4 , a 5 a_1, a_2, a_3, a_4, a_5 a1,a2,a3,a4,a5为点权。

纯板子 D i j k s t r a Dijkstra Dijkstra中, d i s t 5 ′ = w + x + y + z dist'_5 = w + x + y + z dist5=w+x+y+z,但是本题目中,我们需要求得的应该为 d i s t 5 = a 1 + a 2 + a 3 + a 4 + a 5 + w + x + y + z dist_5 = a_1 + a_2 + a_3 + a_4 + a_5 + w + x + y + z dist5=a1+a2+a3+a4+a5+w+x+y+z。由于 D i j k s t r a Dijkstra Dijkstra的特性,我们仅能知道该最短路的起点和终点,无法得出此最短路中经过了哪些点,要加点权的话,我们不妨可以先将点权集成到边权中。 如下图:
请添加图片描述
此时我们通过 D i j k s t r a Dijkstra Dijkstra计算出来的 d i s t 5 dist_5 dist5为:
d i s t 5 ′ = ( a 1 + w + a 2 ) + ( a 2 + x + a 3 ) + ( a 3 + y + a 4 ) + ( a 4 + z + a 5 ) = a 1 + 2 ∗ a 2 + 2 ∗ a 3 + 2 ∗ a 4 + a 5 + w + x + y + z \begin{aligned} dist'_5 &= (a_1 + w + a_2) + (a_2 + x + a_3) + (a_3 + y + a_4) + (a_4 +z + a_5) \\ &= a_1 + 2 * a_2 + 2 * a_3 + 2 * a_4 + a_5 + w + x + y + z \\ \end{aligned} dist5=(a1+w+a2)+(a2+x+a3)+(a3+y+a4)+(a4+z+a5)=a1+2a2+2a3+2a4+a5+w+x+y+z
观察上式,发现这与我们所求的 d i s t 5 dist_5 dist5相比,中间每个点的点权我们都多加了一遍。上述加粗部分所说,由于我们不知道最短路的过程中会经过哪些点,所以我们无法将多余的部分删除,但是我们却是知道起点和终点,所以我们将起点和终点的点权再加一遍就会得到:
d i s t 5 ′ + a 1 + a 5 = 2 ∗ a 1 + 2 ∗ a 2 + 2 ∗ a 3 + 2 ∗ a 4 + 2 ∗ a 5 + w + x + y + z dist'_5 + a_1 + a_5 = 2*a_1 + 2 * a_2 + 2 * a_3 + 2 * a_4 + 2 * a_5 + w + x + y + z dist5+a1+a5=2a1+2a2+2a3+2a4+2a5+w+x+y+z
可以发现,我们该式与我们所求的 d i s t 5 dist_5 dist5相比,点权部分变成了两倍,边权部分正常,由于我们点权和边权都加到了一起,无法区分开来,那我们索性再加一遍边权,我们将一条边的边权值在改变一下:
请添加图片描述
此时我们纯 D i j k s t r a Dijkstra Dijkstra板子所求 d i s t 5 ′ dist'_5 dist5为:
d i s t 5 ′ + a 1 + a 5 = ( a 1 + 2 ∗ w + a 2 ) + ( a 2 + 2 ∗ x + a 3 ) + ( a 3 + 2 ∗ y + a 4 ) + ( a 4 + 2 ∗ z + a 5 ) + a 1 + a 5 = 2 ∗ a 1 + 2 ∗ a 2 + 2 ∗ a 3 + 2 ∗ a 4 + 2 ∗ a 5 + 2 ∗ w + 2 ∗ x + 2 ∗ y + 2 ∗ z = 2 ∗ ( a 1 + a 2 + a 3 + a 4 + a 5 + w + x + y + z ) = 2 ∗ d i s t 5 \begin{aligned} dist'_5 + a_1 + a_5&= (a_1 + 2 * w + a_2 )+ (a_2 + 2 * x + a_3) + (a_3 + 2 * y + a_4) + (a_4 + 2 * z + a_5 )+ a _1 + a_5\\ &= 2 * a_1 + 2 * a_2 + 2 * a_3 + 2 * a_4 + 2 * a_5 + 2 * w + 2 * x + 2 * y + 2 * z \\ &= 2 * (a_1 + a_2 + a_3 + a_4 + a_5 + w + x + y + z) \\ &= 2 * dist_5 \end{aligned} dist5+a1+a5=(a1+2w+a2)+(a2+2x+a3)+(a3+2y+a4)+(a4+2z+a5)+a1+a5=2a1+2a2+2a3+2a4+2a5+2w+2x+2y+2z=2(a1+a2+a3+a4+a5+w+x+y+z)=2dist5
上式中 d i s t 5 dist_5 dist5为该题所求。

AC代码:

#include <bits/stdc++.h>
#define _1 first
#define _2 second
using i64 = long long;

const int N = 1e6 + 5, M = 1e2 + 5;
const i64 INF = 1e18;

int n, m, k;
int h[N], cnt;
i64 a[N], dist[N];

struct Edge {
    i64 v, w, next;
} g[N];

inline void add(int u, int v, i64 w) {
    cnt ++;
    g[cnt].w = w;
    g[cnt].v = v;
    g[cnt].next = h[u];
    h[u] = cnt;
}

struct node {
    i64 d, u;
    bool operator<(const node& t)const {
        return d > t.d;
    } // 由于使用的优先队列priority_queue默认为大根堆,这里重载一下
};

inline void dijkstra() {	// dijkstra纯板子
    int s = 1;
    for (int i = 1; i <= n; i ++)   dist[i] = INF;
    dist[s] = 0;
    std::priority_queue<node> pq;
    
    pq.push(node{0, s});
    while (!pq.empty()) {
        node tmp = pq.top();    pq.pop();
        i64 u = tmp.u, d = tmp.d;
        if (d != dist[u])   continue ;
        for (int i = h[u]; i; i = g[i].next) {
            i64 v = g[i].v, w = g[i].w;
            if (dist[u] + w < dist[v]) {
                dist[v] = dist[u] + w;
                pq.push(node{dist[v], v});
            }
        }
    }
    return ;
}

void solve()
{
    std::cin >> n >> m;
    
    for (int i = 1; i <= n; i ++) {
        std::cin >> a[i];
    }
    
    for (int i = 1; i <= m; i ++) {
        int x, y, z;
        std::cin >> x >> y >> z;
        add(x, y, z + z + a[x] + a[y]);
        add(y, x, z + z + a[x] + a[y]);
        	// 无向图,定义边权 = 2倍原本边权 + 所连两点的点权
    }
    dijkstra();
    for (int i = 2; i <= n; i ++) {
        std::cout << (dist[i] + a[1] + a[i]) / 2 << ' ';
    } std::cout << '\n';
    
}

int main()
{
    std::ios::sync_with_stdio(false);std::cout.tie(nullptr);std::cout.tie(nullptr);
    int _ = 1;  // std::cin >> (_);
    while (_ --) {
        solve();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值