文档讲解: 977.有序数组的平方
视频讲解:双指针法经典题目!LeetCode:977.有序数组的平方初始做题状态:暴力算法半对,有进步,开心
class Solution {
public:
vector<int> sortedSquares(vector<int>& nums) {
int k=nums.size()-1;//我这里第一次做时写错了
vector<int>result(nums.size(),0);//自己第一次做时定义错了,原因,该处不太会
for(int i=0,j=nums.size()-1;i<=j;){//i要比j小,j的取值范围是nums.size()-1,注意最后一个j后面加';'
if(nums[i]*nums[i]<nums[j]*nums[j]){
result[k--]=nums[j]*nums[j];
j--;
}
else{//这里用esls,第一次做时,我用错成if
result[k--]=nums[i]*nums[i];
i++;
}
}
return result;
}
};
记录和朋友的聊天,哈哈
209.长度最小的子数组
暴力解法
暴力解法的思想是,用了两个for()循环来更新子序列的 初始 和 终止 位置,用一个if()循环来更新子序列的长度。最后导致时间复杂度超了
暴力解法也看的稀里糊涂的/(ㄒoㄒ)/~~,一定要重刷呀,我!
class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums) {
int result=INT32_MAX;//给最终的结果赋予一个int型整数的最大值,为啥呢?因为只有这样它才能和任意一个数比较,都保证比它小
int sum=0;
int subLength=0;
for(int i=0;i<nums.size();i++){//子序列起点为i
sum=0;
for(int j=i;j<nums.size();j++){//子序列终点为j
sum+=nums[j];
if(sum >= s){
subLength=j-i+1;//子序列的长度
result=result<subLength?result:subLength;
break;
}
}
}
// 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
return result==INT32_MAX?0:result;
}
};
滑动窗口思想
滑动窗口,不同于暴力解法的地方是:滑动窗口用了一个for()循环求滑动窗口之和,里面内嵌了一个while()循环来更新初始位置。
滑动窗口也学的很模糊,要重学!
class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums) {
int result=INT32_MAX;//给最终的结果 初始时赋予最大值
int sum=0;//滑动窗口数值之和
int i=0;//滑动窗口起始位置
int subLength=0;//滑动窗口长度
for(int j=0;j<nums.size();j++){
sum+=nums[j];//求滑动窗口之和
//注意这里使用的是while不是if,该循环内 每次更新i(起始位置),并不断比较子序列是否符合条件
while(sum>=s){
subLength=(j-i+1);//计算子序列的长度
result=result<subLength?result:subLength;//更新最终的结果,确保它每次都是最小值
sum-=nums[i];//更新滑动窗口数值之和
i++;//更新子序列起始位置
}
}//如果result没有被赋值的话,就返回0,说明没有符合条件的子序列。如果被赋值,就返回result
return result==INT32_MAX?0:result;
}
};
59.螺旋矩阵II
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
vector<vector<int>> res(n, vector<int>(n, 0)); // 使用vector定义一个二维数组
int startx = 0, starty = 0; // 定义每循环一个圈的起始位置
int loop = n / 2; // 每个圈循环几次,例如n为奇数3,那么loop = 1 只是循环一圈,矩阵中间的值需要单独处理
int mid = n / 2; // 矩阵中间的位置,例如:n为3, 中间的位置就是(1,1),n为5,中间位置为(2, 2)
int count = 1; // 用来给矩阵中每一个空格赋值
int offset = 1; // 需要控制每一条边遍历的长度,每次循环右边界收缩一位
int i,j;
while (loop --) {
i = startx;
j = starty;
// 下面开始的四个for就是模拟转了一圈
// 模拟填充上行从左到右(左闭右开)
for (j = starty; j < n - offset; j++) {
res[startx][j] = count++;
}
// 模拟填充右列从上到下(左闭右开)
for (i = startx; i < n - offset; i++) {
res[i][j] = count++;
}
// 模拟填充下行从右到左(左闭右开)
for (; j > starty; j--) {
res[i][j] = count++;
}
// 模拟填充左列从下到上(左闭右开)
for (; i > startx; i--) {
res[i][j] = count++;
}
// 第二圈开始的时候,起始位置要各自加1, 例如:第一圈起始位置是(0, 0),第二圈起始位置是(1, 1)
startx++;
starty++;
// offset 控制每一圈里每一条边遍历的长度
offset += 1;
}
// 如果n为奇数的话,需要单独给矩阵最中间的位置赋值
if (n % 2) {
res[mid][mid] = count;
}
return res;
}
};