二叉树的前序遍历遵循根节点→左子树→右子树的访问顺序,是二叉树遍历的基础算法之一。递归实现凭借简洁的逻辑和直观的思路,成为理解前序遍历的最佳切入点。本文结合 C++ 代码,拆解递归实现的核心原理与细节。
一、递归实现的核心逻辑
递归的本质是利用函数调用栈模拟遍历顺序,通过 “分治” 思想将大问题拆解为子问题:
-
- 终止条件:遇到空节点时停止递归;
- 访问顺序:先记录当前根节点值,再递归处理左子树,最后递归处理右子树,严格遵循前序规则。
二、完整代码实现
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> preorderTraversal(TreeNode* root) {
vector<int> list;
preorder(root, list); // 调用递归辅助函数
return list;
}
// 递归辅助函数:处理单个节点的遍历逻辑
void preorder(TreeNode* root, vector<int> &list) {
if (root == nullptr) { // 递归终止:空节点无需处理
return;
}
list.push_back(root->val); // 1. 访问当前根节点
preorder(root->left, list); // 2. 递归遍历左子树
preorder(root->right, list); // 3. 递归遍历右子树
}
};
三、关键细节解析
- 参数传递:使用
vector<int> &list引用传递结果容器,避免频繁拷贝,提升效率; - 终止条件:
root == nullptr是递归的 “出口”,防止访问空指针导致程序崩溃; - 执行顺序:严格按照 “根→左→右” 执行,确保遍历结果符合前序定义。
四、递归的优缺点
- 优点:代码简洁、逻辑直观,无需手动维护栈结构;
- 缺点:递归深度过大时可能触发栈溢出(如极端的链式二叉树),且函数调用有一定开销。
五、总结
递归实现前序遍历的核心是 “信任递归函数的能力”—— 假设preorder函数能正确遍历一棵子树,只需按规则组合根节点与左右子树的遍历结果即可。这种 “分而治之” 的思想,是理解二叉树遍历的关键。
这题来自力扣144二叉树前序遍历
1167

被折叠的 条评论
为什么被折叠?



