力扣热题100之盛最多水的容器

题目

给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。
找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量。
说明:你不能倾斜容器。

代码

方法一

在这里插入图片描述
在这里插入图片描述
依次遍历到倒数第二个数,这种方法的时间复杂度较大,差不多是O(n的平方)

class Solution:
    def maxArea(self, height: List[int]) -> int:
        max_area=0
        for i in range(len(height)-1):
            for j in range(len(height)-1, i, -1):
                cur_area=(j-i)*min(height[i],height[j])
                if max_area<cur_area:
                    max_area=cur_area
        return max_area          

方法二

思想和方法一一致都是双指针左右两边往中间走,但是可以根据木桶效应将上面的两个for循环简化:
重点就是如何移动指针:每次比较左右指针的高度,移动较矮的一侧的指针。

因为容器的面积受限于较矮的一侧。如果保持较矮的一侧不动,移动高的一侧,容器的面积只会因为宽度减小而更小(因为这时高度没变,或者时因为移动高的一侧高度变得更小)。只有移动较矮的一侧,才有可能在后续找到更高的垂线,从而抵消宽度减小的影响,甚至获得更大的面积。

class Solution:
    def maxArea(self, height: List[int]) -> int:
        max_area=0
        left,right=0,len(height)-1
        while left<right:
            cur_area=(right-left)*min(height[right],height[left])
            if height[right]<height[left]:
                right-=1
            else:
                left=+1
            max_area=max(cur_area,max_area)
        return max_area        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值