题目
给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。
找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量。
说明:你不能倾斜容器。
代码
方法一
依次遍历到倒数第二个数,这种方法的时间复杂度较大,差不多是O(n的平方)
class Solution:
def maxArea(self, height: List[int]) -> int:
max_area=0
for i in range(len(height)-1):
for j in range(len(height)-1, i, -1):
cur_area=(j-i)*min(height[i],height[j])
if max_area<cur_area:
max_area=cur_area
return max_area
方法二
思想和方法一一致都是双指针左右两边往中间走,但是可以根据木桶效应将上面的两个for循环简化:
重点就是如何移动指针:每次比较左右指针的高度,移动较矮的一侧的指针。
因为容器的面积受限于较矮的一侧。如果保持较矮的一侧不动,移动高的一侧,容器的面积只会因为宽度减小而更小(因为这时高度没变,或者时因为移动高的一侧高度变得更小)。只有移动较矮的一侧,才有可能在后续找到更高的垂线,从而抵消宽度减小的影响,甚至获得更大的面积。
class Solution:
def maxArea(self, height: List[int]) -> int:
max_area=0
left,right=0,len(height)-1
while left<right:
cur_area=(right-left)*min(height[right],height[left])
if height[right]<height[left]:
right-=1
else:
left=+1
max_area=max(cur_area,max_area)
return max_area