标题:四阶幻方
把1~16的数字填入4x4的方格中,使得行、列以及两个对角线的和都相等,满足这样的特征时称为:四阶幻方。
四阶幻方可能有很多方案。如果固定左上角为1,请计算一共有多少种方案。
比如:
1 2 15 16
12 14 3 5
13 7 10 4
8 11 6 9
以及:
1 12 13 8
2 14 7 11
15 3 10 6
16 5 4 9
就可以算为两种不同的方案。
请提交左上角固定为1时的所有方案数字,不要填写任何多余内容或说明文字。
- 四阶幻方问题的讨论
在本次讨论中,我们首先讨论了四阶幻方问题。大家就该问题进行了深入
分析和探讨,从不同的角度出发,提出了各自的观点和看法。经过激烈的讨论和交流,我们总结了一些解决问题的方法。
- 四阶幻方问题的解决方案
(一)数学方法
1 2 15 16
12 14 3 5
13 7 10 4
8 11 6 9
方法1:(中心对称交换)----------------只需交换对角线上的数字.
把图中的1和16,6和11,4和13,7和10进行交换位置即可右侧的答案.
方法2:(轴对称交换)--------------交换对角线以外的数字,分两步完成.
(1)把5和9,2和14,3和15,8和12分别交换位置;
(2)把14和15,9和12,5和8,2和3分别交换位置,可得右侧的答案.
1 12 13 8
2 14 7 11
15 3 10 6
16 5 4 9
方法3:解法(田格图阵法)
1.将1~16平均分为4组,每组4个数的和均为幻和34.(多种分法)如:
1 12 7 14=2 11 8 13=3 10 5 16=4 9 6 15=34.
2.分别填入4个田字格,两行之和分别为13与21.
3.将4个田格合并,再适当转动各田格,得到满足要求的幻方.
1 12 13 8
7 14 11 2
16 5 4 9
10 3 6 15
(二)计算机算法
方法一:暴力枚举
四阶幻方问题中,每个数字只能使用一次,因此可以暴力枚举所有可能的填数方案,并检查是否满足行、列、对角线和相等的条件。具体实现时,可以使用回溯算法,从左上角开始填数,每次填数时检查当前位置是否合法,如果合法则继续填下一个位置,如果不合法则回溯到上一个位置重新填数。
#include <stdio.h>
int square[4][4];
int is_magic_square() {
int i, j, sum;
// 检查行和
for (i = 0; i < 4; i++) {
sum = 0;
for (j = 0; j < 4; j++) {
sum += square[i][j];
}
if (sum != 34) {
return 0;
}
}
// 检查列和
for (j = 0; j < 4; j++) {
sum = 0;
for (i = 0; i < 4; i++) {
sum += square[i][j];
}
if (sum != 34) {
return 0;
}
}
// 检查主对角线和
sum = 0;
for (i = 0; i < 4; i++) {
sum += square[i][i];
}
if (sum != 34) {
return 0;
}
// 检查副对角线和
sum = 0;
for (i = 0; i < 4; i++) {
sum += square[i][3-i];
}
if (sum != 34) {
return 0;
}
return 1;
}
void solve_magic_square(int i, int j) {
int num, k, l, next_i, next_j;
if (i == 4) {
if (is_magic_square()) {
for (k = 0; k < 4; k++) {
for (l = 0; l < 4; l++) {
printf("%2d ", square[k][l]);
}
printf("\n");
}
printf("\n");
}
return;
}
next_i = j < 3 ? i : i + 1;
next_j = j < 3 ? j + 1 : 0;
for (num = 1; num <= 16; num++) {
int valid = 1;
for (k = 0; k < i; k++) {
for (l = 0; l < 4; l++) {
if (square[k][l] == num) {
valid = 0;
break;
}
}
if (!valid) {
break;
}
}
if (valid) {
square[i][j] = num;
solve_magic_square(next_i, next_j);
square[i][j] = 0;
}
}
}
int main() {
square[0][0] = 1;
solve_magic_square(0, 1);
printf("%d ", square[i][j]);
return 0;
}
方法二:递归算法
回溯算法的基本思路是,从左上角开始填数,每次填数时检查当前位置是否合法,如果合法则继续填下一个位置,如果不合法则回溯到上一个位置重新填数。具体实现时,可以使用一个递归函数来实现回溯过程。
#include <stdio.h>
int is_magic_square(int square[4][4]) {
int i, j;
// 检查行和
for (i = 0; i < 4; i++) {
int sum = 0;
for (j = 0; j < 4; j++) {
sum += square[i][j];
}
if (sum != 34) {
return 0;
}
}
// 检查列和
for (j = 0; j < 4; j++) {
int sum = 0;
for (i = 0; i < 4; i++) {
sum += square[i][j];
}
if (sum != 34) {
return 0;
}
}
// 检查主对角线和
int sum = 0;
for (i = 0; i < 4; i++) {
sum += square[i][i];
}
if (sum != 34) {
return 0;
}
// 检查副对角线和
sum = 0;
for (i = 0; i < 4; i++) {
sum += square[i][3 - i];
}
if (sum != 34) {
return 0;
}
return 1;
}
void solve_magic_square(int square[4][4], int i, int j) {
if (i == 4) {
if (is_magic_square(square)) {
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
printf("%d ", square[i][j]);
}
printf("\n");
}
printf("\n");
}
return;
}
int next_i = (j < 3) ? i : i + 1;
int next_j = (j < 3) ? j + 1 : 0;
for (int num = 1; num <= 16; num++) {
int found = 0;
for (int k = 0; k < i; k++) {
for (int l = 0; l < 4; l++) {
if (square[k][l] == num) {
found = 1;
break;
}
}
if (found) {
break;
}
}
if (!found) {
square[i][j] = num;
if (j == 3 || i == 0) {
int row_sum = 0;
for (int k = 0; k < 4; k++) {
row_sum += square[i][k];
}
if (row_sum == 34) {
solve_magic_square(square, next_i, next_j);
}
} else if (square[i][j-1] + square[i][j] == 34) {
solve_magic_square(square, next_i, next_j);
}
}
}
}
int main() {
int square[4][4] = {0};
solve_magic_square(square, 0, 0);
printf("%2d ", square);
return 0;
}
方法三:递归(java)
使用一维列表来记录当前已经生成的数字,并且将一维列表的下标在二维列表中编好填入数字的顺序(其实就是将当前一维列表的数字根据固定的位置填入到二维坐标中),这样就可以在递归方法一开始的时候进行判断是否满足条件,也即可以根据一维列表中生成的元素个数对应的行、列、对角线的和提前判断是否可以往下递归,编号的顺序为如下图所示,下面这个图是规定好的顺序(可以为其他的顺序关键是要求限制的条件尽可能多这样会过滤掉很多不满足条件往下递归的例子),相当于我是将生成好的数字按照图中的顺序填进去(其实与逐行生成数字没有什么两样只是这里规定好了顺序了)。比如列表长度为4的时候那么可以判断第一行的和是否满足34,当列表长度为7的时候判断判断第一列的和是否满足34,为列表长度为10的时候判断第二列的和是否满足34,为列表长度为11的时候判断3/10/8/6对角线的和是否满足34,为12的时候判断第二行的和是否满足34....当发现不满足条件的时候直接return到上一层这样会很快计算出结果。这个思路是按照元素个数越少但是可以判断的条件越多的一维列表下标的顺序填进二维列表中可以避免大量不满足条件的递归
代码:
import java.util.ArrayList;
public class Main {
public static boolean[] used = new boolean[17];
public static ArrayList<String> list = new ArrayList<String>();
public static int count = 0;
public boolean check(int[] A, int step) {
if(step >= 4)
if(A[0] + A[1] + A[2] + A[3] != 34)
return false;
if(step >= 8)
if(A[4] + A[5] + A[6] + A[7] != 34)
return false;
if(step >= 12)
if(A[8] + A[9] + A[10] + A[11] != 34)
return false;
if(step >= 13)
if(A[0] + A[4] + A[8] + A[12] != 34 || A[3] + A[6] + A[9] + A[12] != 34)
return false;
if(step >= 14)
if(A[1] + A[5] + A[9] + A[13] != 34)
return false;
if(step >= 15)
if(A[2] + A[6] + A[10] + A[14] != 34)
return false;
if(step >= 16)
if(A[3] + A[7] + A[11] + A[15] != 34 || A[0] + A[5] + A[10] + A[15] != 34)
return false;
return true;
}
public void dfs(int[] A, int step) {
if(check(A, step) == false)
return;
if(step == 16) {
StringBuffer s = new StringBuffer("");
for(int i = 0;i < A.length;i++)
s.append(A[i]);
if(!list.contains(s.toString())) {
list.add(s.toString());
count++;
}
return;
}
for(int i = 2;i <= 16;i++) {
if(used[i] == false) {
used[i] = true;
A[step] = i;
dfs(A, step + 1);
used[i] = false;
}
}
}
public static void main(String[] args) {
Main test = new Main();
int[] A = new int[16];
A[0] = 1;
used[1] = true;
test.dfs(A, 1);
System.out.println(count);
}
}
- 心得体会
不足:
1、缺乏创新性:四阶幻方是一个经典且相对简单的问题,已经有很多方法和算法来解决它。如果只是简单地重复前人的解法,可能无法激发出新的思考和讨论。
2、缺乏深度:四阶幻方的解法相对来说较为直接和有限,一旦找到一个正确的解法,其他解法就没有太多可追求的空间。因此,讨论可能无法深入探讨更复杂和有趣的数学问题。
2、信息不完整:有时候在题目讨论中,可能会缺乏一些重要的信息来细化问题,例如限定幻方中元素的范围、是否允许重复数字等。这样会导致讨论的结果不够准确和完整。
4、缺乏讨论的广度:在四阶幻方问题中,讨论可能会局限于一种方法或算法,而忽视了其他可能的解法和思路。这样会限制讨论的广度,可能错过一些有意思的观点和观察
总结:
通过讨论四阶幻方题目,锻炼和培养自己的数学思维能力,包括观察、推理、分析和解决问题的能力。四阶幻方问题有多种算法和方法可以解决,通过讨论,我们可以学习和了解不同的解法,探索它们的原理和思路,深入理解幻方的性质:讨论幻方题目使我们更深入地理解幻方的特性和性质,例如幻方公式、对称性等,进一步丰富你的数学知识。
在讨论中,我们有新的观点和思考出现,这激发我们的创新能力,并带来新的发现和洞察。
提升我们合作和交流能力,学会倾听他人的观点,展示自己的思考,并通过讨论达成共识。
通过讨论幻方题目,你可能会对数学产生更大的兴趣,并意识到数学在现实世界中的应用和意义。