题目: 给九个不同的数字,将这九个数字放在3×3的格子中,要求每行、每列以及两个对角线上的三数之积相等(三阶积幻方)。
其中一个三阶积幻方如图:
2 | 9 | 12 |
---|---|---|
36 | 6 | 1 |
3 | 4 | 18 |
解释: 每行、每列以及两个对角线上的三数之积相等,都为216。
请设计一种算法,讲给定的九个数字重新排列后,使其满足三阶积幻方的要求。排列后的九个数字中:第1-3个数字为方格的第一行,第4-6个数字为方格的第二行,第7-9个数字为方格的第三行。
解答要求
时间限制:C/C++1000ms,其他语言:2000ms
内存限制:C/C++256MB,其他语言:512MB
输入
九个不同的数字,每个数字之间用空格分开。 0<数字<10^7 。0<排列后满足要求的每行、每列以及两个对角线上的三数之积<2^31-1 。
输出
九个数字所有满足要求的排列,每个数字之间用空格分开。每行输出一个满足要求的排列。
要求输出的排列升序排序,即对于排列A(A1,A2,A3,…,A9)和排列B(B1,B2,B3,…,B9),从排列的第一个数字开始,遇到Aj<Bi,则排列A<排列B(1<=i<=9) 。
说明: 用例保证至少有一种排列组合满足条件。
样例1
输入:75 36 10 4 30 225 90 25 12
输出:10 36 75 225 30 4 12 25 90
10 225 12 36 30 25 75 4 90
12 25 90 225 30 4 10 36 75
12 225 10 25 30 36 90 4 75
75 4 90 36 30 25 10 225 12
75 36 10 4 30 225 90 25 12
90 4 75 25 30 36 12 225 10
90 25 12 4 30 225 75 36 10
解释:如图所示:九宫格的每行、每列以及两个对角线上的三数之和为27000 。
样例2
输入:1 2 3 5 10 20 25 50 100
输出:2 25 20 100 10 1 5 4 50
2 100 5 25 10 4 20 1 50
5 4 50 100 10 1 2 25 20
5 100 2 4 10 25 50 1 20
20 1 50 25 10 4 2 100 5
20 25 2 1 10 100 50 4 5
50 1 20 4 10 25 5 100 2
50 4 5 1 10 100 20 25 2
解释:如图所示:九宫格的每行、每列以及两个对角线上的三数之和为1000 。
#include <iostream>
#include <vector>
#include <string>
#include <algorithm>
#include <sstream>
using namespace std;
void fun(vector<vector<int>>& map, vector<vector<int>>& res) {
vector<int> temp;
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
temp