短除法可能便于理解,但效率其实并不理想,时间复杂度可以达到O(n)而辗转相除法被推断出时间复杂度为 O(log(n))
最大公约数的求法
欧几里得算法是用来求两个正整数最大公约数的算法。古希腊数学家欧几里得在其著作《The Elements》中最早描述了这种算法,所以被命名为欧几里得算法。扩展欧几里得算法可用于RSA加密等领域。假如需要求 1997 和 615 两个正整数的最大公约数,用欧几里得算法,是这样进行的:
1997 ÷ 615 = 3 (余 152)
615 ÷ 152 = 4(余7)
152 ÷ 7 = 21(余5)
7 ÷ 5 = 1 (余2)
5 ÷ 2 = 2 (余1)
2 ÷ 1 = 2 (余0)
至此,最大公约数为1以除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数,所以就得出了 1997 和 615 的最大公约数 1。
最小公倍数的求法
比如6和8共同的公约数就是2。2乘3和2乘4分别是它们的约数,找公共的约数2。最小公倍数是2乘3乘4=24。2是最大公约数。3和4分别是各自的另一个约数,把它们都乘在一起。即:最小公倍数=a*b/最大公约数
import java.util.Scanner;
public class Main {
public static int gcd(int a, int b) {
return (a % b == 0) ? b : gcd(b, a % b);
}
public static void main(String[] args) {
// TODO Auto-generated method stub
int a, b;
Scanner sc = new Scanner(System.in);
a = sc.nextInt();
b = sc.nextInt();
int ans = gcd(a, b);
System.out.printf(ans+" "+ a * b / ans);
}
}