Java蓝桥杯最大公约数与最小公倍数辗转相除法

短除法可能便于理解,但效率其实并不理想,时间复杂度可以达到O(n)而辗转相除法被推断出时间复杂度为 O(log(n))

最大公约数的求法

欧几里得算法是用来求两个正整数最大公约数的算法。古希腊数学家欧几里得在其著作《The Elements》中最早描述了这种算法,所以被命名为欧几里得算法。扩展欧几里得算法可用于RSA加密等领域。假如需要求 1997 和 615 两个正整数的最大公约数,用欧几里得算法,是这样进行的:
1997 ÷ 615 = 3 (余 152)
615 ÷ 152 = 4(余7)
152 ÷ 7 = 21(余5)
7 ÷ 5 = 1 (余2)
5 ÷ 2 = 2 (余1)
2 ÷ 1 = 2 (余0)
至此,最大公约数为1以除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数,所以就得出了 1997 和 615 的最大公约数 1。

最小公倍数的求法

比如6和8共同的公约数就是2。2乘3和2乘4分别是它们的约数,找公共的约数2。最小公倍数是2乘3乘4=24。2是最大公约数。3和4分别是各自的另一个约数,把它们都乘在一起。即:最小公倍数=a*b/最大公约数

import java.util.Scanner;
public class Main {
    public static int gcd(int a, int b) {
        return (a % b == 0) ? b : gcd(b, a % b); 
    }
    public static void main(String[] args) {
        // TODO Auto-generated method stub
         
         int a, b;
         Scanner sc = new Scanner(System.in);
          a = sc.nextInt();
          b = sc.nextInt();
            int ans = gcd(a, b);
            System.out.printf(ans+" "+ a * b / ans);
            
    }
}
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

稳749

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值