1.四数相加
题目链接/文章讲解/视频讲解: 代码随想录
代码:
(不用迭代器版)
class Solution {
public:
int fourSumCount(vector<int>& nums1, vector<int>& nums2, vector<int>& nums3, vector<int>& nums4) {
// key是两数之和,value是两数之和出现过的次数
int count = 0;
std::unordered_map<int,int> map;
for(int a = 0;a < nums1.size();a++){
for(int b = 0;b < nums2.size();b++){
map[nums1[a] + nums2[b]]++;
}
}
for(int c = 0;c < nums3.size();c++){
for(int d = 0;d < nums4.size();d++){
if(map.find(0 - (nums3[c] + nums4[d])) != map.end()){
count += map[0 - (nums3[c] + nums4[d])];
}
}
}
return count;
}
};
用了迭代器,看起来清楚多了。
class Solution {
public:
int fourSumCount(vector<int>& nums1, vector<int>& nums2, vector<int>& nums3, vector<int>& nums4) {
// 题上只说了求个数,所以我们可以把其中两个数组之和映射到哈希表里,去看“0-其余两数之和”有没有在哈希表中出现过
// 为了减少时间复杂度,所以数组两两分组计算和
// 这里map的key是前两组数组之和,考虑到和的数值可能不只出现一次,所以value放的是出现次数
std::unordered_map<int,int> map;
int count = 0;
for(int a : nums1){
for(int b : nums2){
map[a+b]++;
}
}
for(int c : nums3){
for(int d : nums4){
if(map.find(0 - (c + d)) != map.end()){
// 这里count要和出现次数相加,因为我们这里不去重,即使数值重复也区别看待
count += map[0 - (c + d)];
}
}
}
return count;
}
};
思路:在注释里。
状态:对map的操作不熟悉。不用迭代器,自己手动遍历的时候老是把数组和下标搞混。
2.赎金信
题目链接/文章讲解: 代码随想录
代码:(哈希表)
class Solution {
public:
bool canConstruct(string ransomNote, string magazine) {
int map[26] = {0};
// 把要被判断的字符串映射到map数组里
for(int i : ransomNote){
map[i - 'a']++;
}
// 对map的每个元素遍历,看看magazine里的元素能不能把map里的元素全都抵消掉
for(int j : magazine){
map[j - 'a']--;
}
// map的元素如果是正数,说明ransomNote里有magazine里没有的元素
for(int k : map){
if(k > 0){
return false;
}
}
return true;
}
};
思路:因为这道题涉及到的只有26个英文字母的映射,所以直接用数组作为哈希表就好了。这次终于自己独立做出来了!!
3.三数之和
题目链接/文章讲解/视频讲解: 代码随想录
代码:
双指针法:
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> result;
// 因为题上要求返回的是值,所以我们可以对数组进行排序(排序会找不到原下标)
sort(nums.begin(),nums.end());
for(int i = 0;i < nums.size();i++){
// 如果数组中最小的数都比0大,那就不可能找到题解。nums[i]就是三元组里最小的数。
if(nums[i] > 0){
return result;
}
// 由于题中不要重复的三元组,所以要依次对nums[i],nums[left],nums[right]去重
// 这里先对nums[i]去重
if(i > 0 && nums[i - 1] == nums[i]){
continue; // for循环对每一种i的取值进行遍历,所以如果发现重复了,就换一个i的取值,也就是跳出循环
// 同时,这里不能写nums[i+1]和nums[i]比较,这样只是nums[i]和nums[left]相等的情况,题目中要的是不同的三元组,所以应该和上一个循环的i比
}
int left = i + 1;
int right = nums.size() - 1;
while(left < right){ // 这里考虑直接取等的话,我们实际上只取了两个数,不符合三元组的题目要求
if(nums[i] + nums[left] + nums[right] > 0){
right--;
}else if(nums[i] + nums[left] + nums[right] < 0){
left++;
}else{
// 先取值一次,之后再看看有没有重复的。因为已经排过序了,所以重复的元素肯定是相邻的
result.push_back(vector<int>{nums[i],nums[left],nums[right]});
// 在给nums[left]和nums[right]去重的时候,可能会出现不满足循环条件的情况,这里要添上
while(left < right && nums[left] == nums[left + 1]){
left++;
}
while(left < right && nums[right] == nums[right - 1]){
right--;
}
left++;
right--;
}
}
}
return result;
}
};
思路:哈希表的方法看了下,放弃了。我还是把双指针消化了吧。感觉这个双指针在这里可以动态地根据当前结果去调整下一次的大小。固定一个值nums[i],然后去调整双指针。
难点在去重上。一个是nums[i]的去重,要和上次的取值比。不然就直接排除了和nums[left]相等的情况了(同一个三元组的元素内部可以相等)。然后是剩下两个的去重,首先得保证取一个,然后在去重复的过程中,还要注意可能在此过程中仍然满足循环条件。以及去重完,还是要正常地移动双指针到下一个位置。
细节打满的一道题。
4.四数之和
题目链接/文章讲解/视频讲解: 代码随想录
代码:
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
vector<vector<int>> result;
sort(nums.begin(),nums.end());
for(int k = 0;k < nums.size();k++){
if(nums[k] > target && nums[k] >= 0){
break;
}
if(k > 0 && nums[k] == nums[k - 1]){
continue;
}
for(int i = k + 1;i < nums.size();i++){
if(nums[k] + nums[i] > target && nums[k] + nums[i] >= 0 ){
break;
}
if(i > k + 1 && nums[i] == nums[i - 1]){
continue;
}
int left = i + 1;
int right = nums.size() - 1;
while(left < right){
if((long) nums[k] + nums[i] + nums[left] + nums[right] > target){
right--;
}else if((long) nums[k] + nums[i] + nums[left] + nums[right] < target){
left++;
}else{
result.push_back(vector<int>{nums[k],nums[i],nums[left],nums[right]});
while(left < right && nums[left] == nums[left + 1]){
left++;
}
while(left < right && nums[right] == nums[right - 1]){
right--;
}
left++;
right--;
}
}
}
}
return result;
}
};
思路:和三数之和的思路一样,但是三数之和给的target是0,而四数之和就不能通过最小值大于target来剪枝了,因为负数越加越小,所以需要我们加上nums[k]>0的条件。
对于里面的for循环,就是把前面的所有固定的数组值看为一个整体来和target比,同时,在i的for循环去重中,判断条件应该加上i > k + 1,因为i的初值为k + 1,不能减完后比初值还小。
以及对于两个指针的去重,不管怎么去判断,要保证在你的代码中,left和right的去重比较的方向是配套的,两个都和上一个比(这个对下标要有限制),或者都和下一个比。(血的教训)