1.回文子串
代码:
class Solution {
public:
int countSubstrings(string s) {
vector<vector<bool>>dp(s.size(),vector<bool>(s.size(), false));
int result = 0;
for(int i = s.size() - 1; i >= 0; i--){
for(int j = i; j < s.size(); j++){
if(s[i] == s[j]){
if(j - i <= 1){
dp[i][j] = true;
result++;
}else if(dp[i + 1][j - 1] == true){
dp[i][j] = true;
result++;
}
}
}
}
return result;
}
};
note:
为了实现递推,拥有这种递推关系,最好是如果判断两端的元素相等,且两端内的字符串本身就是回文子串,就证明现在的子串也是回文子串,从而实现了递推关系。
dp数组的含义:dp[i][j]表示下标为[i,j]的字符串是否为回文子串
递推公式:
if(s[i] == s[j]){
if(j - i <= 1){
dp[i][j] = true;
result++;
}else if(dp[i + 1][j - 1] == true){
dp[i][j] = true;
result++;
}
}
dp数组的初始化:为了不影响计算,全部初始化为false
遍历顺序:根据递推公式,可知,我们要从下往上,从左往右遍历
2.最长回文子序列
代码随想录 (programmercarl.com)
代码:
class Solution {
public:
int longestPalindromeSubseq(string s) {
vector<vector<int>> dp(s.size(),vector<int>(s.size(),0));
for(int i = 0; i < s.size(); i++){
dp[i][i] = 1;
}
for(int i = s.size() - 1; i >= 0; i--){
for(int j = i + 1; j < s.size(); j++){
if(s[i] == s[j]){
dp[i][j] = dp[i + 1][j - 1] + 2;
}else{
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
return dp[0][s.size() - 1];
}
};
note:
dp数组的含义:下标为[i,j]的最长回文子序列的长度为dp[i][j]
递推公式:
if(s[i] == s[j]){
dp[i][j] = dp[i + 1][j - 1] + 2;
}else{
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
注意子序列不必连续!
dp数组的初始化:将下标为[i,i]的元素全部初始化为1
遍历顺序:
根据递推公式,可知,我们要从下往上,从左往右遍历