二刷代码随想录训练营Day 46|647. 回文子串、516.最长回文子序列、动态规划总结篇

1.回文子串

代码随想录 (programmercarl.com)

视频:动态规划,字符串性质决定了DP数组的定义 | LeetCode:647.回文子串_哔哩哔哩_bilibili

代码:

class Solution {
public:
    int countSubstrings(string s) {
        vector<vector<bool>>dp(s.size(),vector<bool>(s.size(), false));
        int result = 0;
        for(int i = s.size() - 1; i >= 0; i--){
            for(int j = i; j < s.size(); j++){
                if(s[i] == s[j]){
                    if(j - i <= 1){
                        dp[i][j] = true;
                        result++;
                    }else if(dp[i + 1][j - 1] == true){
                        dp[i][j] = true;
                        result++;
                    }
                }
            }
        }
        return result;
    }
};

 note:

为了实现递推,拥有这种递推关系,最好是如果判断两端的元素相等,且两端内的字符串本身就是回文子串,就证明现在的子串也是回文子串,从而实现了递推关系。

dp数组的含义:dp[i][j]表示下标为[i,j]的字符串是否为回文子串

递推公式:

 if(s[i] == s[j]){
     if(j - i <= 1){
        dp[i][j] = true;
        result++;
    }else if(dp[i + 1][j - 1] == true){
        dp[i][j] = true;
        result++;
    }
}

dp数组的初始化:为了不影响计算,全部初始化为false

遍历顺序:根据递推公式,可知,我们要从下往上,从左往右遍历

2.最长回文子序列

代码随想录 (programmercarl.com)

视频:动态规划再显神通,LeetCode:516.最长回文子序列_哔哩哔哩_bilibili

代码:

class Solution {
public:
    int longestPalindromeSubseq(string s) {
        vector<vector<int>> dp(s.size(),vector<int>(s.size(),0));
        for(int i = 0; i < s.size(); i++){
            dp[i][i] = 1;
        }
        for(int i = s.size() - 1; i >= 0; i--){
            for(int j = i + 1; j < s.size(); j++){
                if(s[i] == s[j]){
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                }else{
                    dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[0][s.size() - 1];
    }
};

 note:

dp数组的含义:下标为[i,j]的最长回文子序列的长度为dp[i][j]

递推公式:

if(s[i] == s[j]){
    dp[i][j] = dp[i + 1][j - 1] + 2;
}else{
    dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}

注意子序列不必连续!

dp数组的初始化:将下标为[i,i]的元素全部初始化为1

遍历顺序:

 根据递推公式,可知,我们要从下往上,从左往右遍历

3.动态规划总结

代码随想录 (programmercarl.com)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值